Полная версия

Главная arrow Экология arrow ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ: ПРОЦЕССЫ И АППАРАТЫ ЗАЩИТЫ АТМОСФЕРЫ

  • Увеличить шрифт
  • Уменьшить шрифт


<<   СОДЕРЖАНИЕ ПОСМОТРЕТЬ ОРИГИНАЛ   >>

Адсорбция паров летучих растворителей

Рекуперация органических растворителей имеет как экономическое, так и экологическое значение, поскольку потери их с выбросными газами весьма велики: в 1993 г., например, в атмосферу России было выброшено 1,6 млн. т летучих органических растворителей и 2,5 млн. т других углеводородов. Выбросы паров растворителей происходят при их хранении и при использовании в технологических процессах. Для их рекуперации наибольшее распространение получили методы адсорбции. Улавливание паров возможно любыми мелкопористыми адсорбентами: активными углями, силикагелями, алюмогелями, цеолитами, пористыми стеклами и т.п. Однако активные угли, являющиеся гидрофобными адсорбентами, наиболее предпочтительны для решения этой задачи: при относительной влажности очищаемых паровоздушных или парогазовых потоков до 50% влага практически не влияет на сорбируемость паров органических растворителей. Рентабельность адсорбционных установок с использованием активных углей зависит от концентрации в очищаемых газах паров летучих органических растворителей. Наименьшие концентрации (С) растворителей в очищаемом воздухе, при которых обеспечивается рентабельность рекуперационных установок, приведены ниже:

Растворитель,

С, г/м’

Растворитель,

С, г/м3

Ацетон

3,0

Метиленхлорид

2,0

Бензин

2,0

Сероуглерод

6,0

Бензол

2,0

Тетрахлоруглерод

4,5

Бутилацетат

1,5

Толуол

2,0

Ксилол

2,1

Трихлорэтилен

1,8

Метилацетат

2,1

Этиловый спирт

1,8

Поглощение паров летучих растворителей можно проводить в стационарных (неподвижных), кипящих и плотных движущихся слоях поглотителя, однако в производственной практике наиболее распространенными являются рекуперационные установки со стационарным слоем адсорбента, размещаемым в вертикальных, горизонтальных или кольцевых адсорберах. Адсорберы вертикального типа обычно используют при небольших потоках подлежащих очистке паровоздушных (парогазовых) смесей, горизонтальные и кольцевые аппараты служат, как правило, для обработки таких смесей при высоких (десятки и сотни тысяч кубометров в час) скоростях потоков. Рекуперационные установки с адсорберами периодического действия (со стационарным слоем адсорбента) работают по трем технологическим циклам: четырех-, трех- и двухфазному.

Четырехфазный цикл включает последовательно фазы адсорбции, десорбции, сушки и охлаждения. Адсорбцию проводят на активных углях. При десорбции из насыщенного адсорбента острым паром удаляют адсорбированный растворитель. При сушке нагретым воздухом из адсорбента вытесняют влагу, накапливающуюся в нем в фазе десорбции при конденсации части острого пара. Нагретый и обезвоженный поглотитель охлаждают атмосферным воздухом.

Трехфазный цикл имеет отличие от четырехфазного в том, что исключается одна из последних фаз четырехфазного цикла, например, процесс охлаждения адсорбента как самостоятельная фаза: слой поглотителя охлаждают при адсорбции отработанным (очищенным от паров растворителя) воздухом. Может исключаться и фаза сушки. В этом варианте после адсорбции производят нагрев насыщенного адсорбента горячим инертным газом с отводом паровой смеси в конденсатор. Такой процесс десорбции завершают затем продувкой слоя угля водяным паром. В последующей фазе охлаждения поглотитель обрабатывают холодным воздухом. Фазу сушки как самостоятельную стадию обычно исключают, если после десорбции адсорбент имеет относительно низкую влажность. В этом случае в фазе охлаждения достигается полная регенерация адсорбента.

Двухфазный цикл включает две стадии (операции): адсорбцию и десорбцию. При этом процесс адсорбции совмещают с сушкой и охлаждением поглотителя. С этой целью определенное время паровоздушную смесь подают в слой в нагретом состоянии (50-60°С), а затем без подогрева, либо в течение всей фазы адсорбции паровоздушную смесь подают в слой при одинаковой температуре (до 35°С).

Выбор того или иного цикла работы рекуперационной установки определяется характером подлежащих улавливанию растворителей, их содержанием в исходной паровоздушной смеси, особенностями и технико-экономическими возможностями производства, в технологии которого происходит образование паров летучих растворителей. Считают, что при относительно высоких концентрациях паров летучих растворителей в паровоздушных смесях (до 50% нижнего концентрационного предела взрываемости) рационально использовать четырехфазный цикл, в случае средних и малых концентраций (2-3 г/м3) целесообразнее применять трехфазный цикл (с исключением фазы охлаждения). Двухфазный цикл с адсорбцией паров из паровоздушной смеси при одинаковой температуре (до 35°С) может быть принят для рекуперации нс смешивающихся с водой растворителей, а двухфазный цикл с подогревом паровоздушной смеси до 50- 60°С нерационален в связи с работой поглотителя в этих условиях с пониженной активностью.

С целью гарантирования непрерывности рекуперационного процесса установка улавливания паров летучих растворителей должна включать как минимум два адсорбера периодического действия (обычно их число составляет от 3 до 6 и более).

Во избежание потерь растворителей с прошедшими очистку (отработанными, выхлопными) потоками процесс адсорбции можно проводить путем передачи паровоздушной смеси, прошедшей основной адсорбер, в последовательно включаемый дополнительный адсорбер. В этом случае каждый из этих двух адсорберов последовательно играет роль головного или хвостового аппарата. Такой прием несколько увеличивает расходы на транспорт паровоздушной смеси, но в ряде случаев окупается снижением потерь улавливаемых растворителей.

Периодичность переключения адсорберов рекуперационной установки на ту или иную фазу технологического цикла определяется графиком ее работы.

На рис. 1-39 в качестве примера представлена схема адсорбционного отделения работающей по двухфазному циклу установки улавливания паров органических растворителей из паровоздушных смесей, образующихся при окраске кож нитроэмалями.

В соответствии с этой схемой паровоздушную смесь с содержанием паров растворителей (бутилацетат, бутиловый спирт, толуол или бензол, этиловый спирт, ацетон) 5-6 г/м3 вентилятором через калориферы подают в адсорберы, заполненные активным углем АР-3, очищают в них и выбрасывают в атмосферу через выхлопную трубу. В начале процесса поглощения паровоздушную смесь в течение 2 ч подают в слой горячего и влажного поглотителя подогретой до 50- 60°С, в течение последующего времени нагрев не производят (процесс насыщения длится 8-12 ч). Таким образом, параллельно с поглощением паров растворителей из очищаемой паровоздушной смеси в течение первой фазы этого цикла проводят высушивание и охлаждение поглотителя. По окончании адсорбции поглощенные растворители удаляют из угля острым паром. В течение этой второй фазы цикла температуру в адсорбере поддерживают между 115 и 118°С. Десорбцию прекращают при достижении плотности дистиллята, образующегося в конденсаторе, равной 0,966 г/см3. Дистиллят (конденсат) из конденсатора через разделитель фаз и расслаиватель передают в хранилище, откуда часть продукта возвращают непосредственно в производство, а часть перекачивают в отделение ректификации для дальнейшей переработки.

Развитие адсорбционного метода рекуперации паров летучих растворителей в мировой практике идет в основном но двум направлениям. Одно из них связано с аппаратурным оформлением рекупера-

Схема адсорбционного отделения установки улавливания паров органических растворителей из паровоздушных смесей процессов окраски кож нитроэмалями

Рис. 1-39. Схема адсорбционного отделения установки улавливания паров органических растворителей из паровоздушных смесей процессов окраски кож нитроэмалями: 1 — вентилятор; 2 — калориферы; 3 — адсорберы; 4 — конденсатор; 5 — разделитель фаз; 6 — расслаиватель ционных установок, другое — с углеродными поглотителями паров летучих растворителей.

В последнее время большое внимание уделяется непрерывно действующим установкам с движущимся плотным и псевдоожиженным слоем адсорбента. К преимуществам таких установок относят достаточно высокие скорости обрабатываемых потоков, обусловливающие компактность оборудования; высокий коэффициент использования адсорбентов; отсутствие энергозатрат на периодическое нагревание и охлаждение одного и того же аппарата; возможность сравнительно простой и полной автоматизации и простоту обслуживания.

Описан ряд оригинальных решений, касающихся конструктивных особенностей адсорбционной аппаратуры. В частности, предложены различные варианты изготовления адсорбера в виде вращающегося барабана, снабженного перегородками, делящими его на секции. Последние заполнены активным углем и при вращении барабана последовательно проходят зоны адсорбции и регенерации, обеспечивая непрерывность процесса. Имеется ряд конструкций, в которых используется гранулированный активный уголь в виде тонкого слоя, размещаемого между двумя полотнами эластичного гибкого и пористого материала (например, полиуретана). Поперечное по отношению к газовому потоку перемещение “ленты-сэндвича” обеспечивает непрерывность процесса очистки. Имеются и другие конструктивные решения адсорберов.

Большое внимание в последние годы уделяется и углеродным материалам-поглотителям: расширяется их сырьевая база, ведутся работы, преследующие своей целью получение высокоактивных и износостойких гранулированных активных углей широко исследуются и уже находят практическое применение в промышленности различные тканые и нетканые материалы на основе углеродных активных волокон, например установки с фильтрами, основу которых, составляет активное угольное волокно, получаемое на базе целлюлозных волокон.

Преимущества использования активных углеродных волокон перед гранулированными активными углями состоят в возможности обеспечения повышенной степени рекуперации растворителей (обычно выше 99%); существенном снижении потерь растворителей, связанных с термическим разложением последних в присутствии углеродных адсорбентов, и, как следствие, повышении количества рекуперата; применимости для рекуперации полимеризующихся мономеров и растворителей с высокой температурой кипения; пониженной пожаро- и взрывоопасности; компактности адсорбционной аппаратуры даже с неподвижным слоем активных углеродных волокон.

Для осуществления непрерывного процесса предложены адсорберы, в которых полотно ткани движется перпендикулярно движению газа. Ткань сматывается в рулон, что обеспечивает возможность ее периодической регенерации с получением концентрированного потока десорбата. Эти же цели могут быть достигнуты и при использовании адсорбера, снабжаемого располагаемыми в несколько параллельных рядов вертикальными полотнищами, состоящими из активного углеродного и другого, более прочного волокна. Через зазоры между их поверхностями пропускают парогазовую смесь (адсорбционная способность ткани из активного углеродного волокна не зависит от направления очищаемого парогазового потока).

С целью достижения более глубокой очистки обрабатываемых потоков от паров летучих растворителей используют комбинированные методы, сочетающие различные процессы.

На рис. 1-40 в качестве примера представлена схема установки рекуперации фенола и этанола из отходящих газов производства слоистых пластиков, работающей по комбинированному методу. Для улавливания паров фенола на этой установке используют абсорбционный метод, а для улавливания паров этанола — адсорбционный.

В соответствии с этой схемой паровоздушную смесь с содержанием 0,2-0,5 г/м3 фенола и 5-7 г/м3 этанола при 120°С подают в контактный холодильник, где охлаждают ее до 30-40°С и одновременно очищают от смолистых включений циркулирующим раствором едкого натра. Последний охлаждают в теплообменнике. Смолистые вещества выделяют в отстойнике и периодически удаляют на сжигание. Очищенную от смолистых включений паровоздушную смесь направляют в абсорбер, где фенол абсорбируют раствором едкого натра (эффективность очистки 98-99%). Насыщенный фенолом раствор собирают в емкость и направляют на переработку. Освобожденную от фенола паровоздушную смесь через фильтр подают в адсорбер, где на активном угле очищают от паров этанола. Насыщенный поглотитель регенерируют острым паром с получением 10- 22%-го водно-этанольного конденсата, который направляют на ректификацию в колонну. Установка обеспечивает очистку воздуха от фенола и этанола до требований санитарных норм и возврат в производство практически всего уловленного количества фенола и этанола.

Разновидности комбинированного метода улавливания паров летучих растворителей весьма многообразны. Например, в соответствии с одним из его вариантов улавливание проводят компримированием паровоздушной смеси до небольшого давления с последующим се пропусканием вначале через абсорбер, орошаемый растворителем, пары которого улавливают (при этом из паровоздушной смеси поглощается большая часть рекуперируемого растворителя), а затем через абсорбер, в котором в качестве поглотителя остаточного количества паров используют тяжелые углеводороды. В соответствии с еще одним из вариантов для удаления паров растворителей из их смесей с воздухом или газами поток паровоздушной (парогазовой) смеси контактируют с водной суспензией, получаемой введением в

Схема установки рекуперации фенола и этанола из отходящих газов производства слоистых пластиков

Рис. 1-40. Схема установки рекуперации фенола и этанола из отходящих газов производства слоистых пластиков: 1 — холодильник; 2 — теплообменник; 3 — отстойник; 4 — емкость; 5 — абсорбер; 6 — фильтр; 7 — адсорберы; 8 — теплообменники; 9 — емкость; 10 — ректификационная колонна водный раствор до 25% порошкового активного угля с размером зерен до 100 мкм.

 
<<   СОДЕРЖАНИЕ ПОСМОТРЕТЬ ОРИГИНАЛ   >>