Конъюнкция

Соединение двух высказываний при помощи слова «и» дает сложное высказывание, называемое конъюнкцией. Высказывания, соединяемые таким образом, называются членами конъюнкции.

Например, если высказывания «Сегодня жарко» и «Вчера было холодно» соединить таким способом, получится конъюнкция «Сегодня жарко и вчера было холодно».

Конъюнкция истинна только в случае, когда оба входящих в нее высказывания являются истинными; если хотя бы один из ее членов ложен, то и вся конъюнкция ложна.

Высказывание А может быть либо истинным, либо ложным, и то же самое можно сказать о высказывании В. Следовательно, возможны четыре пары значений истинности для этих высказываний.

Определение конъюнкции, как и определения других логических связок, служащих для образования сложных высказываний, основывается на двух предположениях.

Во-первых, каждое высказывание (как простое, так и сложное) имеет одно и только одно из двух значений истинности: оно является либо истинным, либо ложным.

Во-вторых, истинностное значение сложного высказывания зависит только от истинностных значений входящих в него высказываний и способа их логической связи между собой.

Эти предположения кажутся простыми. Приняв их, нужно, однако, отбросить идею, что наряду с истинными и ложными высказываниями могут существовать также высказывания, неопределенные с точки зрения своего истинностного значения (такие, как, скажем, «Через пять лет в это время будет идти дождь с громом» и т. п.). Нужно отказаться также от того, что истинностное значение сложного высказывания зависит от «связи по смыслу» соединяемых высказываний.

В обычном языке два высказывания соединяются союзом «и», когда они связаны между собой по содержанию, или смыслу. Характер этой связи не вполне ясен, но понятно, что мы не рассматривали бы конъюнкцию «Он шел в пальто и я шел в университет» как выражение, имеющее смысл и способное быть истинным или ложным. Хотя высказывания «2 — простое число» и «Москва — большой город» истинны, мы не склонны считать истинной также их конъюнкцию «2 — простое число и Москва — большой город», поскольку составляющие ее высказывания не связаны между собой по смыслу. Упрощая значение конъюнкции и других логических связок и отказываясь для этого от неясного понятия «связь высказываний по смыслу», логика делает значение этих связок одновременно и более широким, и более ясным.

 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ     След >