Полная версия

Главная arrow Математика, химия, физика arrow АТОМНАЯ ФИЗИКА

  • Увеличить шрифт
  • Уменьшить шрифт


<<   СОДЕРЖАНИЕ ПОСМОТРЕТЬ ОРИГИНАЛ   >>

Спектральные закономерности. Комбинационный принцип. Спектр атома водорода

Спектральный анализ излучения, испускаемого атомами, дает обширную информацию об их строении и свойствах. Обычно наблюдают испускание света горячими одноатомными газами (или парами низкой плотности) или при электрическом разряде в газах.

Спектр излучения атомов состоит из отдельных дискретных линий, которые характеризуются длиной волны или частотой v = c/X. Наряду со спектрами излучения существуют спектры поглощения, которые наблюдают при пропускании излучения со сплошным спектром («белый» свет) через холодные пары. Линии поглощения характеризуются той же длиной волны, что и линии излучения. Поэтому говорят, что линии излучения и поглощения атомов взаимно обращаемы (Кирхгоф, 1859).

В спектроскопии более удобно использовать не длину волны излучения, а обратную величину v = l/X , которую называют спектроскопическим волновым числом, или просто волновым числом (Стони, 1871). Эта величина показывает, сколько длин волн укладывается на единице длины.

С помощью экспериментальных данных швейцарский физик Ритц в 1908 г. нашел эмпирическое правило, называемое комбинационным принципом, согласно которому существует система спектральных термов, или просто термов, Тп и Т , разность между которыми определяет спектроскопическое волновое число некоторой спектральной линии:

Термы считаются положительными. Их значение должно уменьшаться с увеличением номера п (и л,). Так как число линий излучения бесконечно, то бесконечно и число термов. Зафиксируем целое число п. Если считать число л, переменным со значениями л+ 1, л + 2, л + 3,..., то, согласно формуле (1.8), возникает ряд чисел, которым отвечает система спектральных линий, называемая спектральной серией. Спектральная серия — это совокупность спектральных линий, расположенных в определенной закономерной последовательности, и интенсивность которых также изменяется по определенному закону. При л,—о терм Т —>0. Соответствующее волновое число vn = Тп называют границей данной серии. При приближении к границе спектральные линии сгущаются, т. е. разность длин волн между ними стремится к нулю. Интенсивность линий также уменьшается. За границей серии следует сплошной спектр. Совокупность всех спектральных серий образует спектр рассматриваемого атома.

Комбинационный принцип (1.8) имеет также другую форму. Если уяя =Т-Т и уяя =Т-Т — волновые числа двух спек-

ЛЛ| П Л| ПП 2 П *

тральных линий одной и той же серии некоторого атома, то разность этих волновых чисел (при л, > л2):

представляет собой волновое число спектральной линии какой-то другой серии того же атома. Вместе с тем не всякие возможные комбинационные линии реально наблюдаются в эксперименте.

Комбинационный принцип в свое время был совершенно непонятным и считался забавной игрой чисел. Лишь Нильс Бор в 1913 г. увидел в этой «игре» проявление глубоких внутренних закономерностей атома. Для большинства атомов аналитические выражения для термов неизвестны. Приближенные формулы подбирали с помощью анализа экспериментальных данных. Для атома водорода такие формулы оказались точными. В 1885 г. Бальмер показал, что длины волн наблюдаемых в спектре атома водорода четырех видимых линий —

Рис. 1.6

HQ, Нр, Ну, Hft (рис. 1.6), которые впервые измерил Ангстрем (1868), с большой степенью точности можно вычислить по формуле

где число л = 3,4, 5, 6,.... Постоянная В= 3645,6-10 8 см была определена эмпирически. Для волнового числа из (1.10) следует формула

где R — эмпирическая постоянная Ридберга (1890), R = 4/B. Для атома водорода постоянная Ридберга равна

Из формулы (1.11) видно, что терм для атома водорода имеет простое выражение:

Следовательно, для волновых чисел спектральных серий атома водорода справедлива обобщенная формула Балтера:

Эта формула правильно описывает спектральные серии атома водорода, обнаруженные в эксперименте:

серия Балтера (л = 2, л,= 3, 4, 5, ...) — в видимой и ближней ультрафиолетовой частях спектра X = (6562...3646)* 10"8 см:

серия Лаймана (1914) (л = 1, л, = 2, 3, 4, ...) — в ультрафиолетовой части спектра А = (1216...913)-10“8 см:

серия Пашена (1908) (л = 3, л, =4, 5, 6,...) — в инфракрасной части спектра Х= 1,88...0,82 мкм:

серия Брэккета (1922) (л = 4, л,=5, 6, 7, ...) — в далекой инфракрасной части спектра Х.=4,05... 1,46 мкм:

серия Пфунда (1924) (л = 5, л, =6, 7, 8,...) — в далекой инфракрасной части спектра Х=7,5...2,28 мкм:

серия Хамфри (1952) (л = 6, л, = 7, 8,...) — в далекой инфракрасной части спектра Х= 12,5...3,3 мкм:

Граница каждой серии определяется при л, <». Самая длинноволновая линия в каждой серии (при л,=л + 1) называется головной линией данной серии.

ЗАДАЧИ

1. Найти граничные длины волн спектральных серий атома водорода.

Ответ. Хт = n1/R . ф /

2. Определить головные линии спектральной серии.

Ответ. Х^ =л2(л + 1)2/я(2л + 1).

3. Определить предельные длины волн, между которыми расположены спектральные линии серии Бальмера.

О т в е т. Хф = 3647-10"8 см, Х^ = 6565-10’8 см.

4. Определить классический спектр атома водорода.

Решение. Электрон вместе с ядром можно рассматривать как электрический диполь, радиус-вектор которого периодически изменяется. Проекции радиуса-вектора электрона на декартовы оси также являются периодическими функциями, которые, в общем, можно представить в виде рядов

Фурье: *(/)= ^2 , y(t)= Я^е^ , где As, Bs — константы;

-0С<5<ЭС -»0<00

со — частота обращения электрона вокруг ядра, определяемая третьим законом Кеплера. Средняя за период 7’=2л/о) интенсивность излучения диполя

определяется формулой: I =—-—-(х22 где х2=— Гdtx2. Отсюда еле-

6Л?0С3 V > TJ

дует: / = ——-{(/I2 + 524 + (л2 + В)(2<о)4 + (/12 + В )(3ш)4 +...} Зле0с3

Таким образом, спектр содержит частоту о и ее гармоники 2о), Зсо,... и представляет собой рядравноотстоящих линий. Это противоречит эксперименту.

 
<<   СОДЕРЖАНИЕ ПОСМОТРЕТЬ ОРИГИНАЛ   >>