Полная версия

Главная arrow Медицина arrow БИОХИМИЯ Часть 2.

  • Увеличить шрифт
  • Уменьшить шрифт


<<   СОДЕРЖАНИЕ ПОСМОТРЕТЬ ОРИГИНАЛ   >>

31.4. Генная инженерия. Успехи и проблемы

Вы познакомились с основными приемами и способами модификации генома микробных, растительных и животных клеток. Для биотехнологии большое значение представляет создание суперпродуцентов на основе микробных и растительных клеток, способных синтезировать любые белковые вещества, имеющие практическое значение. Генная инженерия дает возможность не только создания новых, отсутствующих в природе продуцентов целевых продуктов, но и существенного увеличения эффективности уже существующих производств. Например, способом повышения продуктивности того или иного продуцента является амплификация, т. е. увеличение числа копий генов, кодирующих целевой продукт. Можно еще раз подчеркнуть огромные возможности генной инженерии для создания вакцин на основе синтетических антигенов, трансгенных растений с заранее заданными свойствами, а также трансгенных животных. В дополнение следует отмстить использование методов генной инженерии в диагностике некоторых заболеваний, например вирусных инфекций, а также для лечения ряда наследственных заболеваний. В связи с этим появился даже новый термин генная терапия. Для лечения наследственных болезней необходимо дефектный ген заменить на нормально функционирующий. В качестве векторов обычно используют РНК-рстровирусы, которые вводятся в стволовые клетки костного мозга.

Что касается проблем, то их условно можно разделить на три группы.

Методические. Большие трудности для биотехнологов связаны не только с созданием рекомбинантного штамма, но и с секрецией целевого продукта из клетки. Отсутствие этого механизма приводит к накоплению целевого продукта внутри клетки и подавлению биосинтеза по принципу обратной связи. Многие привлекательные для промышленности и медицины продукты кодируются несколькими генами. В задачи генной инженерии входит разработка методов последовательной трансплантации генов в клетки-реципиенты. Ожидает своего разрешения проблема получения любого заданного растения-регенеранта из клона протопластов. Из года в год совершенствуется работа с животными клетками, медленно растущими и легко уязвимыми.

Экономические. Генно-инженерные методы являются весьма дорогостоящими процедурами. Даже в США и в развитых странах Европы создание и внедрение в производство рекомбинантных штаммов или лечение наследственных заболеваний при помощи генной терапии доступны далеко не каждой фирме или медицинскому центру.

Этические. Успехи и возможности генной инженерии далеко не однозначно воспринимаются человеческим сообществом, причем приоритеты неприятия время от времени изменяются. Вначале общественное мнение было встревожено генетической модификацией кишечной палочки Е. coli. Предполагалось, что эти генетические трансформанты выйдут из-под контроля и станут причиной многих страшных заболеваний. К началу 90-х гг. XX в., когда оказалось, что эти страхи безосновательны, внимание переключилось на трансгенные растения. К этому времени большие успехи в получении трансгенных сои, картофеля, кукурузы и других сельскохозяйственных культур были достигнуты в США. Преимущества устойчивых к сорнякам, насекомым и другим условиям окружающей среды растений были очевидны, однако потребление генно-инженерных растительных продуктов в США и особенно в странах Западной Европы было ограничено из-за боязни отдаленных последствий воздействия генетически измененных продуктов питания. То же самое касается трансгенных животных с повышенным содержанием гормона роста — соматотропина. Можно полагать, что в основном эти опасения безосновательны, хотя бурно развивающиеся генно-инженерные исследования должны находиться под контролем сообщества ученых, общественности и правительственных организаций.

 
<<   СОДЕРЖАНИЕ ПОСМОТРЕТЬ ОРИГИНАЛ   >>