Атомно-эмиссионный спектральный анализ

Практической целью атомно-эмиссионного спектрального анализа является качественное, полуколичественное или количественное определение элементного состава анализируемой пробы. В основе этого метода лежит регистрация интенсивности света, испускаемого при переходах электронов атома из одного энергетического состояния в другое.

Одним из наиболее замечательных свойств атомных спектров является их дискретность (линейчатая структура) и сугубо индивидуальный характер числа и распределения линий в спектре, что делает такие спектры опознавательным признаком данного химического элемента. На этом свойстве спектров основан качественный анализ. В количественном анализе определение концентрации интересующего элемента проводят по интенсивности отдельных спектральных линий, называемых аналитическими.

Для получения эмиссионного спектра электронам, входящим в состав частиц анализируемого вещества, необходимо придать дополнительную энергию. С этой целью используют источник возбуждения спектра, в котором вещество нагревается и испаряется, молекулы в газовой фазе диссоциируют на нейтральные атомы, ионы и электроны, т.е. вещество переводится в состояние плазмы. При столкновении в плазме электронов с атомами и ионами последние переходят в возбужденное состояние. Время жизни частиц в возбужденном состоянии не превышает 10 '—10 sc. Самопроизвольно возвращаясь в нормальное или промежуточное состояние, они испускают кванты света, которые уносят избыточную энергию.

Число атомов в возбужденном состоянии при фиксированной температуре пропорционально числу атомов определяемого элемента. Следовательно, интенсивность спектральной линии I будет пропорциональна концентрации определяемого элемента С в пробе:

где k — коэффициент пропорциональности, величина которого нелинейно зависит от температуры, энергии ионизации атома и ряда других факторов, которые обычно с трудом поддаются контролю в ходе анализа.

Чтобы в какой-то мере устранить влияние этих факторов на результаты анализа, в атомно-эмиссионном спектральном анализе принято измерять интенсивность аналитической линии относительно интенсивности некоторой линии сравнения {метод внутреннего стандарта). Внутренний стандарт представляет собой компонент, содержание которого во всех стандартных образцах, а также в анализируемом образце одинаково. Чаще всего в качестве внутреннего стандарта используется основной компонент, содержание которого можно приближенно считать равным 100% (например, при анализе сталей внутренним стандартом может служить железо).

Иногда компонент, играющий роль внутреннего стандарта, специально вводят в одинаковых количествах во все образцы. В качестве линии сравнения выбирают такую линию в спектре внутреннего стандарта, условия возбуждения которой (энергия возбуждения, влияние температуры) максимально близки к условиям возбуждения аналитической линии. Это достигается в том случае, если линия сравнения максимально близка по длине волны к аналитической линии (ДА, <10 нм), а интенсивности линий различаются не более чем на порядок. Если все вышеуказанные условия выполняются, то аналитическая линия и линия сравнения образуют так называемую гомологическую пару.

Выражение для относительной интенсивности спектральных линий двух элементов можно записать в виде

где индекс 1 относится к аналитической линии; индекс 2 — к линии сравнения. Считая концентрацию компонента С2, играющего роль внутреннего стандарта, постоянной, можно считать, что а также является величиной постоянной и не зависит от условий возбуждения спектра.

При высокой концентрации атомов определяемого элемента в плазме заметную роль начинает играть поглощение света невозбужденными атомами того же элемента. Такой процесс называется самопоглощением или ре- абсорбцией. Это приводит к нарушению линейной зависимости интенсивности линии от концентрации в области высоких концентраций. Влияние самопоглощения на интенсивность спектральной линии учитывается эмпирическим уравнением Ломакина

где b — параметр, характеризующий степень самопоглощения, — зависит от концентрации и при ее увеличении монотонно изменяется от 1 (отсутствие самопоглощения) до 0. Однако при работе в достаточно узком концентрационном интервале величину b можно считать практически постоянной. В этом случае зависимость интенсивности спектральной линии от концентрации в логарифмических координатах является линейной:

Уравнение Ломакина не учитывает влияние матричных эффектов на интенсивность спектральной линии. Это влияние проявляется в том, что часто значение аналитического сигнала и, следовательно, результат анализа зависят не только от концентрации определяемого элемента, но и от содержания сопутствующих компонентов, а также от микроструктуры и фазового состава анализируемых материалов.

Влияние матричных эффектов обычно минимизируется использованием стандартных образцов, максимально близких по размерам, структуре и физико-химическим свойствам к исследуемому веществу. Иногда при анализе микропримесей, матричных эффектов удается избежать применением метода добавок и тщательной гомогенизацией всех проб.

К основным источникам возбуждения спектров в атомно-эмиссионной спектроскопии относятся пламя, дуга постоянного или переменного тока, искра, индуктивно связанная плазма.

Важнейшей характеристикой источника возбуждения спектра является его температура. От температуры в основном зависит вероятность перехода частиц в возбужденное состояние с последующим излучением света и, в конечном итоге, величина аналитического сигнала и метрологические характеристики методики.

Вариант атомно-эмиссионной спектроскопии с использованием в качестве источника возбуждения спектров пламени называют методом пламенной фотометрии.

Конструктивно пламенный источник возбуждения представляет собой газовую горелку, в которой анализируемую пробу (раствор) вводят в пламя с помощью форсунки. Пламя состоит из двух зон: внутренней (восстановительной) и внешней (окислительной). В восстановительной зоне происходят первичные реакции термической диссоциации и неполного сгорания компонентов горючей смеси. Эта зона содержит много возбужденных молекул и свободных радикалов, интенсивно излучающих свет практически во всем оптическом диапазоне, начиная с УФ- и заканчивая ИК-областью спектра. Это излучение накладывается на спектральные линии анализируемого вещества и мешает его определению. Поэтому восстановительную зону для аналитических целей не используют.

В окислительной зоне происходят реакции полного сгорания компонентов газовой смеси. Основная часть ее излучения приходится на ИК-диапазон и поэтому не мешает определению спектральных линий в УФ- и видимом диапазонах. Вследствие этого именно окислительная зона используется для аналитических целей. Температуру, состав и окислительно-восстановительные свойства пламени можно в определенных пределах регулировать, меняя природу и соотношение горючего газа и окислителя в смеси. Этот прием часто используется для подбора оптимальных условий возбуждения спектра.

В зависимости от природы и состава горючей смеси температура пламени может изменяться в диапазоне 1500—3000°С. Такие температуры оптимальны для определения лишь летучих и легко возбудимых элементов, в первую очередь щелочных и щелочноземельных металлов. Для них метод фотометрии пламени является одним из самых чувствительных (предел обнаружения составляет до 10 ' масс.%). Для остальных элементов пределы обнаружения на несколько порядков выше.

Важное достоинство пламени как источника возбуждения спектра — высокая стабильность и связанная с ней хорошая воспроизводимость результатов измерений (погрешность не превышает 5%).

В атомно-эмиссионной спектроскопии в качестве источника возбуждения спектра может использоваться дуга постоянного или переменного тока. Дуговой источник представляет собой пару вертикально расположенных электродов (чаще всего угольных), между которыми зажигается дуга. Нижний электрод имеет углубление, в которое помещают пробу. При анализе металлов или сплавов нижний электрод обычно выполняют из анализируемого вещества. Таким образом, дуговой разряд наиболее удобен для анализа твердых проб. Для анализа растворов их, как правило, выпаривают вместе с подходящим порошкообразным коллектором, а образовавшийся осадок помещают в углубление электрода.

Температура дугового разряда существенно выше, чем температура пламени (3000—7000°С), причем для дуги переменного тока температура несколько выше, чем для дуги постоянного тока. Поэтому в дуге эффективно возбуждаются атомы большинства элементов, за исключением наиболее трудно возбудимых неметаллов, таких как галогены. В этой связи для большинства элементов пределы обнаружения в дуговом разряде на один — два порядка ниже, чем в пламени.

Дуговые источники возбуждения (особенно постоянного тока), в отличие от пламенных, не отличаются высокой стабильностью режима работы. Поэтому воспроизводимость результатов невелика (погрешность составляет 10—20%). Однако для полуколичественных определений этого бывает вполне достаточно. Оптимальным применением дуговых источников возбуждения является качественный анализ на основе обзорного спектра.

Искровой источник возбуждения устроен абсолютно аналогично дуговому. Различие заключается в режимах работы электронной схемы. Как и дуговой, искровой источник возбуждения предназначен в первую очередь для анализа твердых образцов.

Особенностью искры является то, что в ее объеме не успевает установиться термодинамическое равновесие. Поэтому говорить о температуре искрового разряда в целом не совсем корректно. Тем не менее можно дать оценку эффективной температуре, которая достигает величины порядка 10 000°С. Этого вполне достаточно для возбуждения атомов всех известных на данный момент химических элементов.

Искровой разряд существенно стабильнее дугового, поэтому воспроизводимость результатов выше.

Индуктивно связанная плазма (ИСП) это самый современный источник возбуждения спектров, обладающий по целому ряду параметров наилучшими аналитическими возможностями и метрологическими характеристиками.

Он представляет собой плазменную горелку, состоящую из грех коакси- ально расположенных кварцевых трубок. Через них с большой скоростью продувается особо чистый аргон. Самый внутренний поток используется как носитель вещества пробы, средний является плазмообразующим, а внешний служит для охлаждения плазмы. Аргоновая плазма инициируется искровым разрядом, а затем стабилизируется с помощью высокочастотной катушки индуктивности, располагающейся в верхней части горелки. При этом возникает кольцевой ток заряженных частиц (ионов и свободных электронов) плазмы. Температура плазмы изменяется но высоте горелки и может достигать 10 000°С.

Метод атомно-эмиссионной спектроскопии с использованием ИСП характеризуется универсальностью (при температуре плазмы возбуждается большинство элементов), высокой чувствительностью, хорошей воспроизводимостью и широким диапазоном определяемых концентраций. Основным фактором, сдерживающим широкое применение этого метода в аналитической практике, является высокая стоимость оборудования и расходуемых материалов (аргона высокой чистоты).

На рис. 9.1 представлен современный прибор для атомно-эмиссионного спектрального анализа с ИСП в качестве источника возбуждения.

Оптический эмиссионный спектрометр с индуктивно-связанной плазмой

Рис. 9.1. Оптический эмиссионный спектрометр с индуктивно-связанной плазмой

Одновременное измерение во всем диапазоне длин волн обеспечивает высочайшую точность и скорость анализа.

В атомно-эмиссионной спектроскопии применяют одно- и многоканальные способы регистрации спектров. Для разложения излучения пробы в спектр используют моно- и полихроматоры. Как правило, атомные спектры содержат большое количество линий, поэтому необходимо применение аппаратуры высокого разрешения. В методе пламенной фотометрии ввиду малого числа наблюдаемых линий можно использовать вместо призменных или дифракционных монохроматоров светофильтры.

Измерение интенсивности спектральных линий может осуществляться визуальным, фотохимическим (фотографическим) и фотоэлектрическим

способами. В первом случае приемником излучения служит глаз, во втором - фотоэмульсия, в третьем — фотоприемник (фотоэлемент, фотоэлектронный умножитель, фотодиод и т.п.). Каждый способ имеет свои преимущества, недостатки и оптимальную область применения.

Визуальные способы регистрации спектров используются для массовых полуколичественных стилоскопических и стилометрических исследований состава материалов, главным образом металлов. В первом случае проводят визуальное сравнение интенсивностей спектральных линий определяемого элемента и близлежащих линий внутреннего стандарта. В силу особенностей глаза как приемника излучения с достаточной точностью можно только либо установить равенство интенсивностей соседних линий, либо выделить наиболее яркую линию из наблюдаемой группы.

Стилометрический анализ отличается от стилосконического наличием возможности контролируемого ослабления более яркой линии аналитической пары. Кроме того, в стилометрах предусмотрена возможность сближения в поле зрения сравниваемых линий. Это позволяет точнее оценить соотношение интенсивностей аналитической линии и линии сравнения.

Предел обнаружения элементов визуальным способом обычно на два порядка хуже по сравнению с другими способами регистрации спектров. Сами по себе измерения достаточно утомительны и не документальны.

Однако большие преимущества визуального способа заключаются в его простоте, высокой производительности и низкой стоимости оборудования. На определение одного компонента требуется не более 1 мин. Поэтому метод широко применяют для целей экспресс-анализа в случаях, когда не требуется высокая точность результатов.

Наиболее широко в атомно-эмиссионном спектральном анализе применяют фотографический способ регистрации спектров. Он достаточно прост по технике выполнения и общедоступен. Основные достоинства фотографической регистрации — документальность анализа, одновременность регистрации всего спектра и низкие пределы обнаружения многих элементов. В автоматизированном варианте этот способ приобретает еще одно преимущество — огромную информативность. Никакими другими методами пока невозможно одновременно определять до 75 элементов в одной пробе, анализируя несколько сот спектральных линий.

Свойства фотографического изображения зависят от полного числа квантов, поглощенных фотоэмульсией. Это позволяет проводить анализ при малом уровне сигнала на выходе системы за счет увеличения времени экспозиции. Немаловажным достоинством способа является возможность многократной статистической обработки фотографий спектров.

При фотографическом способе регистрации интенсивность спектральной линии определяется по почернению (оптической плотности) изображения этой линии на фотопластинке (фотопленке). Основным недостатком фотоматериалов является нелинейная зависимость почернения от освещенности, а также длины волны света, времени проявления, температуры проявителя, его состава и ряда других факторов. Поэтому для каждой партии фотопластинок приходится экспериментально определять характеристическую кривую, т.е. зависимость величины почернения S от логарифма освещенности Е S =f(gE). Для этого обычно пользуются ступенчатым ослабителем, представляющим собой кварцевую или стеклянную пластинку с нанесенным на ее поверхность набором полупрозрачных металлических полосок, обычно из платины, обладающих различающимися, но заранее известными коэффициентами пропускания. Если фотопластинку экспонировать через такой ослабитель, на ней возникнут участки с различной величиной почернения. Измерив величину почернения участка и зная коэффициент пропускания для каждого из них, можно построить характеристическую кривую фотопластинки. Типичный вид этой кривой приведен на рис. 9.2.

Характеристическая кривая фотопластинки

Рис. 9.2. Характеристическая кривая фотопластинки:

Л — порог почернения; ЛВ — область недодержек; ВС — область нормальных почернений;

CD — область передержек

Форма кривой не зависит от выбора единиц освещенности и не меняется, если освещенность заменить на интенсивность излучения, поэтому ее можно строить, откладывая по оси абсцисс логарифмы коэффициентов пропускания ступенчатого ослабителя.

Кривая имеет прямолинейный участок ВС (область нормальных почернений), в пределах которого фактор контрастности

принимает постоянное и максимальное значение. Поэтому относительная интенсивность двух спектральных линий в пределах области нормальных почернений может быть найдена из соотношений

Фотометрирование спектральных линий и обработка получаемых данных представляют собой один из наиболее трудоемких этапов атомно-эмиссионного спектрального анализа, который к тому же часто сопровождается субъективными ошибками. Решением этой проблемы является автоматизация на базе микропроцессорной техники процессов обработки фотографий спектров.

Для фотоэлектрической регистрации используются фотоэлементы, фотоэлектронные умножители (ФЭУ) и фотодиоды. При этом величина электрического сигнала пропорциональна интенсивности измеряемого светового потока. В этом случае либо используется набор фотоприемников, каждый из которых регистрирует интенсивность только своей определенной спектральной линии (многоканальные приборы), либо интенсивность спектральных линий последовательно измеряется одним фотоириемником при сканировании спектра (одноканальные приборы).

Качественный атомно-эмиссионный анализ заключается в следующем:

  • • определение длин волн линий в спектре пробы;
  • • сравнение полученных результатов с данными, приведенными в специальных таблицах и атласах, и установление природы элементов в пробе.

Присутствие элемента в пробе считается доказанным, если не менее четырех линий в пробе совпадают по длинам воли с табличными данными для данного элемента.

Измерение длины, не очень точное, можно проводить по шкале прибора. Чаще сравнивают полученный спектр с известным спектром, в качестве которого обычно используют спектр железа, содержащий большое число хорошо изученных спектральных линий. Для этого на одну фотопластинку в одинаковых условиях параллельно фотографируют спектр пробы и спектр железа. Существуют атласы, в которых приведены спектры железа с указанием положения наиболее характерных линий других элементов, используя которые, можно установить природу элементов в пробе (см. работу № 34).

Если известны длины волн линий, например в спектре железа, между которыми располагается линия с неизвестной длиной волны, длину волны этой линии можно рассчитать но формуле

где Хх длина волны определяемой линии, Xt < XY < Х2; хх расстояние от линии с длиной волны л1 до определяемой линии; х2 — расстояние от линии с длиной волны л2 до определяемой линии. Эта формула верна только для небольшого интервала длин волн. Расстояние между линиями в спектре обычно измеряют при помощи измерительного микроскопа.

Пример 9.1. В спектре пробы между линиями железа Хх = 304,266 нм и Х2 = = 304,508 нм имеется еще одна линия. Вычислим длину волны этой линии Хх, если на экране прибора она удалена от первой линии железа на 1,5 мм, а от второй — на 2,5 мм.

Решение. Используем вышеприведенную формулу:

Если спектр пробы не слишком сложный, идентифицировать элементы в пробе можно, сравнивая спектр пробы со спектрами эталонов.

В количественном спектральном анализе применяются метод трех эталонов, метод постоянного графика и метод добавок.

При использовании метода трех эталонов фотографируются спектры минимум трех эталонов (образцы известной концентрации), затем спектры анализируемых образцов и строится калибровочный график в координатах «AS — lg С».

Пример 9.2. При анализе контактного материала на хром по методу трех эталонов па микрофотометре МФ-2 измерено почернение 5 линий гомологической пары в спектрах эталонов и исследуемого образца. Найдем процентное содержание хрома ССг по данным из табл. 9.2.

Таблица 9.2

Данные для примера 9.2

Параметр

Эталон

Образец

1

2

3

Ог

0,50

1,23

4,17

X

s*

0,07

0,37

0,86

0,61

*Fe

0,27

0,23

0,27

0,25

Решение. В методе трех эталонов используется зависимость разности S почернений линий гомологической пары от логарифма концентрации определяемого элемента. При определенных условиях эта зависимость близка к линейной. По показаниям измерительной шкалы микрофотометра находим:

Определяем логарифмы концентраций: IgC, = -0,30; lgC2 = 0,09; lgC3 = 0,62 и строим калибровочный график в координатах «AS — IgC» (рис. 9.3).

Калибровочный график по методу трех эталонов

Рис. 93. Калибровочный график по методу трех эталонов

Находим Д5для анализируемого образца: ДSx = 0,61 - 0,25 = 0,36, и по калибровочному графику определяем Сл: lgCCr = 0,35; ССг = 2,24%.

Метод постоянного графика применяется при массовых анализах однородных проб. В этом случае, зная контрастность у фотопластинок, пользуются однажды построенным постоянным графиком в координатах «Д5/у — IgC». При работе в области нормальных почернений это будет равносильно координатам «lgIJI — IgC». При работе в области недодержек по характеристической кривой фотопластинки (5 = /(lg/)) для значений 5Ч и 5 находят lg/,, и lg/cp и строят график в координатах «lg///p — IgC». В области недодержек для устранения искривления графика необходимо из почернений линий вычесть почернение фона фотопластинки, измеренного рядом с линией.

Пример 9.3. Для определения очень малых количеств меди в порошкообразном материале применена методика эмиссионного спектрального анализа, предусматривающая трехкратное последовательное сжигание пробы в дуге постоянного тока и определение концентрации по интенсивности линии меди 3247 А и по постоянному графику «lgC — lg/» с учетом фона.

Определим содержание меди в пробе (в %), если почернения линии и фона в спектре и пробах равны:

Номер спектра

1

2

3

*^л+ф

1,52

1,52

1,60

0,07

0,06

0,08

Калибровочный график построен по следующим точкам:

lgC

-5,0

-4,52

-4,00

-3,52

-3,00

W

0,38

0,70

1,11

1,61

1,98

Для построения характеристической кривой фотопластинки со спектрами пробы имеются следующие данные:

S

0,02

0,04

0,10

0,18

0,30

0,73

1,05

1,40

1,70

I

0,35

0,52

0,82

1,25

1,80

5,00

10,00

20,00

42,00

Решение. Для трех спектров рассчитываем разность между линий меди и фоном и находим среднее значение:

Используя данные, приведенные в условии примера, строим характеристическую кривую фотопластинки в координатах «ДS — lg (рис. 9.4).

По характеристической кривой для 5ср = 1,48 находим lg/ = 1,38.

Строим калибровочный график в координатах «lg/ — lgC» (рис. 9.5).

По калибровочному графику для lg/ = 1,38 находим lgC= -3,74, что соответствует концентрации меди в образце 1,8-10 4%.

Характеристическая кривая фотопластинки

Рис. 9.4. Характеристическая кривая фотопластинки

Калибровочный график для нахождения меди в образце

Рис. 95. Калибровочный график для нахождения меди в образце

Метод добавок используется при анализе единичных образцов неизвестного состава, когда возникают особые трудности, связанные с приготовлением эталонов, состав которых должен быть точно идентичен составу пробы (эффект влияния матрицы). В этом методе анализируемую пробу делят на части и в каждую из них вводят определяемый элемент в известной концентрации.

Если концентрация определяемого элемента мата и эффектом самопогло- щения можно пренебречь, то

В этом случае достаточно одной добавки:

Если b тМ и I = аСь, необходимы по крайней мере две добавки: (Сх + Сх) и х + С2). После фотографирования и измерения почернения линии на фотопластинке строят график в координатах «AS — lgС7», где AS = 5Л - Сп I = 1,2, — концентрация добавки. Экстраполируя этот график к нулю, можно найти значение Сх.

Кроме графического метода применяют расчетный метод, особенно если число добавок велико.

Пример 9.4. Определим содержание ниобия в образце (%) методом добавок по данным табл. 9.3 и 9.4 (TI — линия сравнения).

Таблица 9.3

Почернение аналитических линий

Части пробы

Концентрация Nbв пробе с добавками, %

9

JTI

Исходная

cv

0,59

0,75

С первой добавкой

Сх + 0,2

0,91

0,76

Со второй добавкой

с, + 0,6

1,47

0,78

Почернение ступенек линии в спектре, снятом со ступенчатым ослабителем (для построения характеристической кривой фотопластинки)

Номер ступеньки в ослабителе

1

2

3

4

5

6

7

8

W

0,84

1,00

1,19

1,34

1,51

1,69

1,84

2,00

S

0,46

0,55

0,68

0,82

1,02

1,28

1,51

1,81

Решение. По данным, приведенным в условии примера, строим характеристическую кривую фотопластинки (рис. 9.6).

Характеристическая кривая фотопластинки для определения ниобия

Рис. 9.6. Характеристическая кривая фотопластинки для определения ниобия

По характеристической кривой, использование почернение спектральных линий для ниобия и титана, находим lg/Nb, lg/Tj, lg(/N.,//Ti), /Nb//Ti) (табл. 9.5).

Таблица 9.5

Вычисления для примера 9.4

Части пробы

Концентрация ниобия в пробе

lg Ab

IgA,

ig(An/A-i)

Au/Ai

Исходная

cv

1,07

1,26

-0,19

0,646

С первой добавкой

Сх + 0,2

1,41

1,27

0,14

1,38

Со второй добавкой

Сг + 0,6

1,82

1,28

0,54

3,48

Строим график зависимости «/Nb//Ti — Слоб» (рис

9.7).

График зависимости относительной интенсивности спектральной линии ниобия от концентрации добавки

Рис. 9.7. График зависимости относительной интенсивности спектральной линии ниобия от концентрации добавки

Продолжение графика до пересечения с осью абсцисс позволяет определить

координату точки пересечения: -0,12. Таким образом, концентрация ниобия

в пробе Сх составляет 0,12%.

Метрологические характеристики и аналитические возможности атомно-эмиссионной спектроскопии. Чувствительность. Предел обнаружения в атомно-эмиссионном спектра.’!ьном анализе зависит от способа возбуждения спектра и природы определяемого элемента и может существенно изменяться при изменении условий анализа. Для легковозбудимых и легкоионизиру- ющихся элементов (щелочные и большинство щелочноземельных металлов) лучшим источником возбуждения спектров является пламя. Для большинства других элементов наивысшая чувствительность достигается при использовании индуктивно связанной плазмы. Высокие пределы обнаружения в искровом разряде обусловлены тем, что он локализован в очень маленькой области пространства. Соответственно мало и количество испаряемой пробы.

Диапазон определяемых содержаний. Верхняя граница определяемых содержаний определяется главным образом эффектом самоноглощения и связанным с ним нарушением линейности калибровочного графика. Поэтому даже при построении калибровочного графика в логарифмических координатах диапазон определяемых содержаний составляет обычно 2—3 порядка величин концентраций. Исключением является метод с использованием ИСП, для которого эффект самоноглощения проявляется очень слабо, и в связи с этим диапазон линейности может достигать 4—5 порядков.

Воспроизводимость. В атомно-эмиссионной спектроскопии аналитический сигнал очень чувствителен к колебаниям температуры. Поэтому воспроизводимость метода невысока. Использование метода внутреннего стандарта позволяет значительно улучшить этот метрологический показатель.

Селективность в основном лимитируется эффектом наложения спектральных линий. Может быть улучшена увеличением разрешающей способности аппаратуры.

 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ     След >