Полная версия

Главная arrow Медицина arrow ВОЗРАСТНАЯ АНАТОМИЯ И ФИЗИОЛОГИЯ. Т.2 ОПОРНО-ДВИГАТЕЛЬНАЯ И ВИСЦЕРАЛЬНЫЕ СИСТЕМЫ

  • Увеличить шрифт
  • Уменьшить шрифт


<<   СОДЕРЖАНИЕ ПОСМОТРЕТЬ ОРИГИНАЛ   >>

Механизмы мышечного сокращения и расслабления

В основе мышечного сокращения лежит перемещение нитей актина относительно нитей миозина. Нити актина двигаются, как по туннелю, между миозиновыми фибриллами, за счет образования связей с миозином. В результате этого сарко- мер укорачивается (гипотеза «скользящих нитей» А. Хаксли) (рис. 7.29). При этом длина 1-дисков уменьшается, А-диски сохраняют свой размер.

Скольжение актиновых и миозиновых нитей друг относительно друга возможно только в присутствии ионов Са2+ и АТФ, которая образуется при расщеплении гликогена, глюкозы и жирных кислот. Мышцы характеризуются активным обменом веществ. К ним подходит большое количество кровеносных и лимфатических сосудов, а также нервов. Последние образуют с мышечными волокнами синаптические контакты.

Всю цепь событий при мышечном сокращении можно представить следующим образом: в нервно-мышечном синапсе под влиянием приходящих из ЦНС но нервному волокну импульсов выделяется медиатор ацетилхолин, деполяризующий мембрану мышечного волокна. Возникающий при этом импульс распространяется по мембране волокна и Т-трубочкам и передается на мембрану саркоплазматического ретикулума, из которого в саркоплазму выходит кальций. Ионы кальция способствуют образованию комплекса акто- миозина и расщеплению АТФ; освобождающаяся при этом энергия обеспечивает скольжение тонких актиновых нитей вдоль миозиновых.

Строение миофибриллы (а)

Рис. 7.29. Строение миофибриллы (а).

Изменение взаиморасположения миофибрилл при расслаблении (б) и сокращении (в) мышечного волокна

Расслабление мышцы связано с обратным поступлением Са2+ в саркоплазматический ретикулум, что происходит при участии активных механизмов, связанных с работой ионных насосов. Если концентрация ионов кальция в саркоплазме снижается и они перекачиваются в эндоплазматическую сеть, то сокращение мышечного волокна прекращается.

Скелетная мускулатура человека состоит из мышечных волокон нескольких типов с различными структурно-функциональными характеристиками. Выделяют четыре основных типа мышечных волокон: медленные фазические волокна окислительного типа, быстрые фазические волокна окислительного типа, быстрые фазические окислительные волокна с гликолитическим типом окисления и тонические волокна.

Медленные фазические мышечные волокна окислительного типа содержат большое количество белка миоглобина, связывающего 02. Этот белок аналогичен гемоглобину эритроцитов и придает мышечным волокнам темно-красную окраску. Мышцы, состоящие преимущественно из этих волокон, участвуют в поддержании позы человека. Утомление в них развивается очень медленно, а восстанавливаются функции очень быстро.

Мышцы, состоящие преимущественно из быстрых фази- ческих волокон окислительного типа, выполняют быстрые сокрашения без заметного утомления. Это связано с наличием в волокнах большого количества митохондрий и хорошей способностью синтезировать АТФ. Основное назначение таких волокон — выполнение быстрых, энергичных движений.

Мышцы, содержащие быстрые фазические волокна с гли- колитическим типом окисления, развивают быстрое и сильное сокращение, но сравнительно быстро утомляются. АТФ в волокнах этого типа образуется за счет гликолиза. Миоглобин в них отсутствует, поэтому их называют «белыми волокнами».

Тонические волокна сокращаются и расслабляются медленно, так как активность АТФ в них низка. Такие волокна входят в состав некоторых мышц глаза.

Большинство скелетных мышц человека состоит из мышечных волокон различных типов с преобладанием одного из них в зависимости от функций, которые выполняет та или иная мышца.

Основное физиологическое свойство мышц — сократимость — проявляется в способности мышцы к укорачиванию или развитию напряжения. Различают два типа мышечных сокращений — изотонические и изометрические. При изотоническом сокращении волокна мышцы укорачиваются, но напряжение остается постоянным. При изометрическом — мышца укоротиться не может, длина мышечных волокон остается неизменной, так как оба се конца неподвижно закреплены, но напряжение по мере их сокращения возрастает.

По отношению к целому организму применяется иная классификация типов сокращения: изометрическим называют сокращение, при котором длина мышцы не меняется, концентрическим — при котором мышца укорачивается, эксцентрическим — удлиняется (например, при медленном опускании груза). Для естественных движений обычно характерны все три типа сокращения мышц.

Функциональной единицей скелетной мускулатуры считается не отдельное мышечное волокно, а нейромоторная, или двигательная единица, которая включает несколько мышечных волокон, иннервируемых мотонейроном спинного мозга (рис. 7.30, 7.31). В ответ на импульсы, приходящие от мотонейрона, сокращаются все мышечные волокна, входящие в нейромоторную единицу.

Число мышечных волокон, составляющих двигательную единицу, скорость их сокращения и устойчивость к утомлению неодинаковы. В зависимости от их свойств двигательные единицы подразделяют на быстрые (фазные)} медленные (тониРис. 7.30. Двигательные единицы

ческиё) и переходные. Двигательные единицы каждой мышцы неодинаковы. Мышцы, обеспечивающие точные и быстрые движения (например, мышцы пальцев руки), состоят в основном из нескольких сотен или тысяч быстрых двигательных единиц. В большинстве мышц смешанного типа первыми активизируются медленные двигательные единицы, развивающие

Нервно-мышечное соединение

Рис. 7.31. Нервно-мышечное соединение:

а,6 — нервно-мышечный синапс; вэлектронная сканирующая

микроскопия небольшую силу сокращения, а при увеличении возбуждения в сокращение вовлекаются мышечные волокна, развивающие большую силу. Активация быстрых нсйромогорных единиц обеспечивает точную двигательную реакцию.

В естественных условиях к мышце из ЦНС поступают не одиночные импульсы, а серии импульсов, на которые она реагирует не одиночным, а длительным (тетаническим) сокращением. Оно обусловлено тем, что каждый следующий импульс приходит в момент, когда еще не закончилась предыдущая волна сокращения. Последняя, суммируясь с предыдущей, продлевает сокращение мышцы. Если каждая новая волна сокращения возникает в момент, когда мышца уже начала расслабляться под влиянием предшествующего раздражения, возникает зубчатый тетанус. При меньшем интервале между раздражениями, когда каждая новая волна сокращения возникает до начала мышечного расслабления, образуется сплошной, или гладкий, тетанус. Отдельные волокна мышцы при ее естественной стимуляции с нерва отвечают на каждый импульс одиночным сокращением. Слитный тетанус получается за счет суммации сокращений отдельных мышечных волокон. Обычно мышечные волокна одной мышцы сокращаются не одновременно, так как импульсы от различных мотонейронов ЦНС также приходят к ним не одновременно. Это способствует образованию и поддержанию слитного тетаничес- кого сокращения мышцы.

Сокращаясь, мышца выполняет работу. Работа мышц зависит от силы их сокращения, а сила сокращения одной и той же мышцы — от количества нейромоторных единиц, участвующих в нем. Чем их больше, тем сокращение интенсивнее. Сила сокращения также зависит от частоты раздражения. До известного предела увеличение частоты стимуляции сопровождается возрастанием силы мышечного сокращения. Это связано с тем, что с увеличением частоты раздражения в реакцию включается все большее количество мышечных волокон. Максимальное напряжение, которое может развить мышца, определяется числом образующих ее волокон: чем оно больше, тем больше сила мышц. В связи с этим перистые мышцы, состоящие из множества волокон, отличаются большей силой.

Проявление силы мышцы зависит и от особенностей ее прикрепления к костям. Мышцы с большей площадью прикрепления или опоры, имеют большие возможности для проявления силы. Важно также и место приложения силы мышц. Кости вместе с прикрепляющимися к ним мышцами являются рычагами, поэтому чем ближе к точке приложения силы тяжести или чем дальше от точки опоры рычага и ближе к точке приложения силы тяжести прикрепляется мышца, тем большую силу она может развить (рис. 7.32).

Зависимость мышечной силы от таких факторов отчетливо проявляется в деятельности мышц верхней и нижней конечностей. Верхняя конечность предназначена для выполнения разнообразных точных и быстрых движений. Функция нижних конечностей требует большой силы их мышц. Этим функциональным задачам соответствует и характер прикрепления соответствующих мышц. Так, дельтовидная мышца, расположенная в области плечевого сустава, имеет небольшую поверхность опоры и прикрепляется на плечевой кости вблизи от места опоры рычага. У мышц нижних конечностей площадь опоры велика и точка приложения силы находится далеко от точки опоры. У ягодичной мышцы площадь опоры в 23 раза больше, чем у дельтовидной, а площадь прикрепления — больше в 4,5 раза.

Между силой мышцы и величиной ее укорочения нет прямо пропорциональной зависимости. Максимальное укорочение мышцы, а следовательно, и интенсивность сокращения, вызываемого этим укорочением движения, в том или ином суставе зависит от длины мышечных волокон. Она наибольшая в мышцах с параллельным расположением волокон, в то время как большей силой обладают перистые мышцы. Первоначально растянутая мышца при сокращении укорачивается на большую величину.

Работа мышцы при сокращении равна произведению массы груза на поднятую высоту. Отсюда следует, что максимальная работа, выполняемая при одиночном сокращении мышцы, зависит от ее силы (чем больше сила, тем больший груз может быть поднят) и степени укорочения мышцы. В про-

Рычаги тела человека

Рис. 732. Рычаги тела человека:

а — рычаг равновесия; б — рычаг скорости. Треугольник — точка опоры; темные стрелки показывают направление сил мышечной тяги; пунктирные стрелки — направление силы тяжести; пунктирная стрелка — движение цессе естественной деятельности человека величина работы, выполняемой той или иной мышцей, в значительной степени зависит от се способности длительно находиться в сокращенном состоянии (выносливость мышц). Различают выносливость к статическим и динамическим усилиям. Выносливость к статическим усилиям определяется временем, в течение которого удерживается величина заданного усилия. У разных мышц она неодинакова. Наименьшей выносливостью характеризуется трехглавая мышца плеча (1 мин — при усилии, равном 50% максимального), наибольшей — икроножная мышца (7 мин).

Выносливость к длительной работе зависит не только от величины поднимаемого груза, но и от темпа работы. Работа бывает наибольшей при какой-то средней величине груза и частоте движений. Для каждого вида мышечной деятельности можно подобрать некоторый средний (оптимальный) ритм и величину нагрузки, при которой работа станет максимальной, а утомление будет развиваться постепенно.

Работа мышц — необходимое условие их сокращения. Длительная бездеятельность ведет к атрофии мышц и потере работоспособности. Умеренная систематическая работа мышц способствует увеличению их объема, возрастанию силы и работоспособности, что важно для физического развития всего организма.

При длительной динамической или статической работе наступает утомление мышц. Утомлением называют временное понижение работоспособности клетки, органа или целостного организма, наступающее в результате работы и исчезающее после отдыха. В естественных условиях утомление связано, прежде всего, с изменениями, происходящими в нервной системе, в частности с нарушением проведения возбуждения в межнейрональных и нервно-мышечных синаптических контактах. Скорость наступления утомления зависит от состояния нервной системы, ритма, в котором производится работа, и от величины нагрузки. После отдыха работоспособность восстанавливается. И. М. Сеченов впервые (в 1903 г.) показал, что восстановление работоспособности утомленных мышц руки человека после длительной работы по подъему груза происходит быстрее, если в период отдыха производить работу другой рукой или ногой. Такой отдых был назван активным.

Чередование умственного и физического труда, динамические паузы до и во время занятий способствуют повышению работоспособности детей и взрослых. Чем меньше ребенок, тем быстрее у него развивается утомление. В грудном возрасте утомление наступает через 1,5—2 часа обычного бодрствования. Дети утомляются и при неподвижности или длительном ограничении движений.

Мышцы человека даже в покое находятся в несколько сокращенном состоянии. Длительное удерживание напряжения называют мышечным тонусом. Во время сна или при наркозе тонус мышц снижается и вследствие этого тело расслабляется. Тонические сокращения мышц не приводят к развитию утомления. Полное исчезновение тонуса мышц наблюдается только после смерти. Сохранение тонуса обусловлено постоянным поступлением к мышце следующих друг за другом с большими интервалами нервных импульсов от двигательных нейронов Ц11С. Активность этих нейронов поддерживается импульсами, поступающими из вышележащих отделов ЦНС и от рецепторов мышц — мышечных веретен.

Тонус мышц играет важную роль в осуществлении координации движений. У новорожденных и грудных детей преобладает тонус мышц-сгибателей, обусловленный повышенной возбудимостью красного ядра среднего мозга. По мере функционального созревания пирамидной системы мозга и нейронов коры больших полушарий тонус мышц у детей снижается. Это четко проявляется во втором полугодии жизни ребенка и является необходимым условием для развития ходьбы. К трем — пяти годам устанавливается равновесие тонуса мышц-аитагонистов.

 
<<   СОДЕРЖАНИЕ ПОСМОТРЕТЬ ОРИГИНАЛ   >>