Мутационная теория

Мутационная теория, или, правильнее, теория мутаций, составляет одну из основ генетики. Она зародилась вскоре после переоткрытия законов Г. Менделя в трудах Г. де Фриза (1901-1903). Еще раньше к представлениям о скачкообразном изменении наследственных свойств пришел русский ботаник С.И. Коржинский (1899) в своем труде «Гетерогенезис и эволюция». Так что справедливо говорить о мутационной теории Коржинско- го-де Фриза. Гораздо обстоятельнее мутационная теория изложена в трудах Г. де Фриза, посвятившего большую часть жизни изучению проблемы (нутационной изменчивости растений.

На первых порах мутационная теория всецело сосредоточилась на фенотипическом проявлении наследственных изменений, практически не занимаясь механизмом их возникновения. В соответствии с определением Г. де Фриза мутация представляет собой явление скачкообразного, прерывистого изменения наследственного признака Определение понятия «мутация» вызывает трудности. До сих пор, несмотря на многочисленные попытки, не существует краткого определения мутации, лучшего, чем дал Г. де Фриз, хотя и оно не свободно от недостатков.

Основные положения мутационной теории Г. де Фриза сводятся к следующему:

  • 1. Мутации возникают внезапно как дискрегные изменения признаков.
  • 2. Новые формы устойчивы.
  • 3. В отличие от ненаследственных изменений мутации не образуют непрерывных рядов, не группируются вокруг какого-либо среднего типа. Они представляют собой качественные изменения.
  • 4. Мутации проявляются по-разному и могут быть как полезными, так и вредными.
  • 5. Вероятность обнаружения мутаций зависит от числа исследованных особей.
  • 6. Сходные мутации могут возникать неоднократно.

Как и многие генетики раннего периода, Г. де Фриз ошибочно считал, что мутации могут сразу давать начало новым видам, т. е. минуя естественный отбор. Г. де Фриз создал свою мутационную теорию на основе экспериментов с различными видами Oenothera. Парадокс заключался в том, что в действительности он не получил мутаций, а наблюдал результат комби нативной изменчивости, поскольку формы, с которыми он работал, оказались сложными гетерозиготами по транслокациям.

Строгое доказательство возникновения мутаций принадлежит В. Иоганнсену, изучавшему наследование в чистых (самоопыляющихся) линиях фасоли и ячменя. Полученный им результат касался количественного признака - массы семян. Мерные значения таких признаков обязательно варьируют, распределяясь вокруг некоей средней величины. Мутационное изменение подобных признаков и обнаружил В. Иоганнсен (1908-1913).

Так или иначе, но гипотеза о возможности скачкообразных наследственных изменений - мутаций, которую на рубеже столетий обсуждали многие генетики, получила экспериментальное подтверждение.

Крупнейшим обобщением работ по изучению изменчивости в начале XX в. стал закон гомологических рядов в наследственной изменчивости Н.И. Вавилова (1920). Согласно этому закону близким видам и родам организмов свойственны сходные ряды наследственной изменчивости. Чем ближе таксономически рассматриваемые организмы, тем большее сходство наблюдается в ряду (спектре) их изменчивости. Справедливость этого закона Н.И. Вавилов проиллюстрировал на огромном ботаническом материале.

Закон Н.И. Вавилова находит подтверждение в изучении изменчивости животных и микроорганизмов не только на уровне целых организмов, но и отдельных их структур. Достаточно вспомнить эволюционный принцип параллелизма в развитии тканей, сформулированный А.А. Заварзиным.

Закон Н.И. Вавилова имеет большое значение для селекционной практики, поскольку прогнозирует поиск определенных форм культурных растений и животных. Зная характер изменчивости одного или нескольких близких видов, можно целенаправленно искать формы, еще не известные у данного организма, но уже открытые у его таксономических родственников. Своим законом гомологических рядов Н.И. Вавилов фактически заложил основы нового направления - сравнительной генетики.

 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ     След >