Полная версия

Главная arrow Экология arrow ПОЧВОВЕДЕНИЕ

  • Увеличить шрифт
  • Уменьшить шрифт


<<   СОДЕРЖАНИЕ ПОСМОТРЕТЬ ОРИГИНАЛ   >>

Загрязнение почв нефтью и нефтепродуктами

В последние годы проблема нефтяных загрязнений становится все более актуальной. Развитие промышленности и транспорта требует увеличения добычи нефти как энергоносителя и сырья для химической промышленности. А вместе с тем это одна из самых опасных для природы индустрий. Ежегодно миллионы тонн нефти выливаются на поверхность Мирового океана, попадают в почву и грунтовые воды, сгорают, загрязняя воздух.

Большинство земель в той или иной мере загрязнены сейчас нефтепродуктами. Особенно сильно это выражено в регионах, через которые проходят нефтепроводы, а также богатых предприятиями химической промышленности, использующими в качестве сырья нефть или природный газ. Ежегодно десятки тонн нефти загрязняют полезные земли, снижая ее плодородие, но до сих пор этой проблеме не оказывают должного внимания.

Нефть представляет собой жидкость от желто- или светло-бурого до черного цвета, с характерным запахом. Это смесь углеводов и их производных, каждое из которых может рассматриваться как самостоятельный токсикант. В ее составе обнаруживается свыше 1000 индивидуальных органических веществ, содержащих 83—87% углерода, 12—14% водорода, 0,5—6,0% серы, 0,02—1,7% азота, 0,005—3,6% кислорода и незначительную примесь минеральных соединений; зольность нефти не превышает 0,1%. Нефть легче воды: плотность различных видов нефти колеблется от 0,73 до 0,97.

В зависимости от месторождения нефть имеет различный состав, как качественный, так и количественный. Больше всего предельных углеводородов содержится в нефти, добываемой в штате Пенсильвания (США). Бакинская нефть сравнительно бедна предельными углеводородами, но богата так называемыми нафтеновыми углеводородами, содержащимися в количестве до 90%. Значительно богаче предельными углеводородами грозненская нефть, сураханская и ферганская (Средняя Азия).

Основной источник загрязнения почвы нефтью — антропогенная деятельность. В естественных условиях нефть залегает под плодородным слоем почвы на больших глубинах и не производит существенного на нее влияния. В нормальной ситуации нефть не выходит на поверхность, происходит это только в редких случаях в результате подвижек горных пород, тектонических процессов, сопровождающихся поднятием грунта.

Основные загрязнения нефтью происходят в районах нефтепромыслов, нефтепроводов, а также при перевозке нефти по сухопутным и, особенно, морским магистралям.

В районах наземных нефтепромыслов и нефтепроводов периодически происходят локальные утечки нефти и нефтепродуктов, которые не распространяются на большие площади. Гораздо хуже, если утечка происходит из океанической или морской буровой установки или магистрали. В этом случае нефть расползается по воде тончайшей, часто моно- молекулярной пленкой на площади в сотни и тысячи квадратных километров, образуя нефтяные пятна. Оказавшись в прибойной зоне, нефтяная пленка выбрасывается на сушу и заражает огромные площади побережий, нанося колоссальный вред всему живому в этом районе.

Районы и источники загрязнений нефтью можно условно разделить на две группы: временные и постоянные («хронические»). К временным районам можно отнести нефтяные пятна на водной поверхности, разливы при транспортировке. К постоянным относятся районы нефтедобычи, на территории которых земля буквально пропитана нефтью в результате многократных утечек.

Экологические последствия загрязнения почв нефтью и нефтепродуктами зависят от параметров загрязнения, свойств почвы и характеристик внешней среды.

К первой группе факторов относятся химическая природа загрязняющих веществ, концентрация их в почве, срок от момента загрязнения и др. Как было отмечено выше, нефть состоит из многих фракций, существенно различающихся между собой по физико-химическим свойствам. Поэтому их поведение в почве различно.

Наибольшей проникающей способностью обладают легкие фракции, которые капиллярными силами затягиваются на глубину до 1 м. Будучи загрязнена только легкими фракциями, почва со временем может самоочиститься, так как эти фракции обладают низкими температурами кипения и довольно быстро испаряются.

Тяжелые битумные фракции, которые находятся в нефти растворенными в летучих фракциях, проникают не глубже 12 см. При нормальной температуре это твердые аморфные вещества, они адсорбируются из раствора почвенными частицами верхнего слоя, склеивают их, застывают и образуют твердую корку. Такое загрязнение не может быть ликвидировано естественным путем.

Фракции нефти имеют разную токсичность. Поэтому загрязнение тяжелыми фракциями наносит косвенный вред — ухудшает или вообще делает невозможным аэрацию почвы, понижает содержание в почве кислорода, что приводит к снижению количества или вообще вымиранию аэробной части микрофлоры и, наоборот, увеличению числа анаэробов. Наиболее опасно загрязнение именно самой нефтью: при этом легкие фракции проникают вглубь, а тяжелые создают корку на поверхности, не давая первым испариться. В результате все живое в почве просто гибнет, почва теряет свои хозяйственные свойства, становится мертвой.

Ко второй группе факторов принадлежат структура почвы, гранулометрический состав, влажность почвы, активность микробиологических и биохимических процессов и др.

Чем крупнее частицы почвы, тем легче нефть и нефтепродукты проходят внутрь, в ее нижние слои. От структуры почвы также зависит степень аэрации почвы, а следовательно, интенсивность испарения и окисления нефти. Влажная почва отталкивает гидрофобные нефть и нефтепродукты, препятствуя их впитыванию.

К внешним факторам относятся температура воздуха, ветреность, уровень солнечной радиации и особенно доля ультрафиолетового излучения в свете, растительный покров и пр.

Чем выше температура воздуха, тем выше скорость окислительных процессов, посредством которых разлагается на воздухе нефть. Соответственно, в летнее время нефть быстрее разлагается: легкие фракции испаряются, тяжелые окисляются. Зимой, при отрицательной температуре, большинство тяжелых фракций переходят в твердое состояние и вообще не окисляются, поэтому основная часть (если не все) процессов разложения нефти и нефтепродуктов происходят именно летом. Ветер обдувает верхний слой почвы свежим воздухом, создавая динамически повышенную концентрацию кислорода над ней, способствуя окислению. К тому же ветер создает токи воздуха в воздушной системе почвы, по крайней мере той ее части, что осталась после загрязнения. Выветривание верхнего загрязненного и окисленного слоя также содействует дальнейшему очищению. Ультрафиолетовое излучение способствует окислительным реакциям и поэтому сильно ускоряет разложение нефти на поверхности земли и, особенно, на водных гладях.

При сильном нефтяном загрязнении растительный покров обычно вымирает. Однако если загрязнение не очень велико, то он может способствовать очищению почвы. Образующийся от него за несколько лет растительный опад создает над загрязненным слоем чистый гумусовый слой, богатый аэробной микрофлорой, которая может вести окисление лежащих ниже нефтепродуктов.

Для охраны почв от нефтяного загрязнения требуется проведение следующих мероприятий:

  • • выработка норм допустимого содержания нефти и нефтепродуктов в почве;
  • • осуществление анализа хозяйственно важных земель (особенно вблизи нефтепроводов, химпредприятий, буровых установок) на содержание в них нефтепродуктов;
  • • капитальный ремонт или закрытие перечисленных объектов, если установлено, что это предприятие, нефтепровод, буровая установка является источником нефтяного загрязнения;
  • • наказание лиц, ответственных за произошедшее загрязнение;
  • • рекультивация и санация земель, загрязненных нефтепродуктами.

Специфика загрязнения земель нефтепродуктами заключается

в том, что последние долго разлагаются (десятки лет), на этих землях не растут растения и выживают немногие виды микроорганизмов. Восстановить земли можно путем удаления загрязненного почвенного слоя вместе с нефтью. Далее может следовать либо засев культурами, которые в получившихся условиях смогут дать наибольшее количество биомассы, либо завоз незагрязненной почвы.

Восстановление загрязненной нефтепродуктами земли проходит в три основных этапа:

  • • удаление загрязненной нефтью почвы;
  • • рекультивация нарушенного при этом ландшафта;
  • • мелиорация.

На первом этапе вывозится минимальное количество загрязненной почвы и свозится в места захоронения или используется там, где от нее не требуется плодородных свойств (нанесение дамб и т. п.).

На втором этапе производится завоз нового плодородного слоя и вскрышных пород с хорошими почвообразующими свойствами, формирование нужного рельефа. Характер проведения этих работ зависит от таких факторов, как вид последующего использования рекультивируемых площадей, климат и окружающий рельеф.

На третьем этапе, соответственно, производится приспособление к сельскохозяйственному использованию. Заключается оно, как правило, в обеспечении нужного водного режима, защите от эрозии, оползней и т. д. Третий этап не является обязательным, но поскольку восстановление земель производится в основном под сельскохозяйственные нужды, то он обычно проводится тоже.

Таким образом, нефть представляет собой смесь углеводов и их производных, в целом свыше 1000 индивидуальных органических веществ, каждое из которых может рассматриваться как самостоятельный токсикант. Основной источник загрязнения почвы нефтьюантропогенная деятельность. Загрязнение происходит в районах нефтепромыслов, нефтепроводов, а также при перевозке нефти.

Экологические последствия загрязнения почв нефтью и нефтепродуктами зависят от параметров загрязнения (химическая природа загрязняющих веществ, концентрация их в почве, срок от момента загрязнения и др.), свойств почвы (структура почвы, гранулометрический состав, влажность почвы, активность микробиологических и биохимических процессов и др.) и характеристик внешней среды (температура воздуха, ветреность, уровень солнечной радиации и особенно доля ультрафиолетового излучения в свете, растительный покров и пр.). Восстановление загрязненных нефтепродуктами земель проходит либо засевом культур, устойчивых к нефтяному загрязнению, либо завозом незагрязненной почвы, что осуществляется в три основных этапа: удаление загрязненной нефтью почвы, рекультивация нарушенного ландшафта, мелиорация.

Многочисленные исследования ученых-агрохимиков показали, что разные виды и формы минеральных удобрений неодинаково влияют на свойства почв. Внесенные в почву удобрения вступают в сложные взаимодействия с нею. Здесь происходят всевозможные превращения удобрений, которые зависят от целого ряда факторов: свойств удобрений и почвы, погодных условий, агротехники. От того, как происходит превращение отдельных видов минеральных удобрений: фосфорных, калийных, азотных и т. д., зависит влияние их на почвенное плодородие.

Отрицательное действие удобрений на окружающую среду связано прежде всего с несовершенством свойств и химического состава удобрений. Существенными недостатками многих минеральных удобрений являются наличие остаточной кислоты (свободная кислотность) вследствие технологии их производства; физиологическая кислотность и щелочность, образующаяся в результате преимущественного использования растениями из удобрений катионов или анионов. Длительное применение физиологически кислых или щелочных удобрений изменяет реакцию почвенного раствора, приводит к потерям гумуса, увеличивает подвижность и миграцию многих элементов.

К значительному недостатку многих минеральных удобрений можно отнести наличие в них тяжелых металлов (кадмия, свинца, никеля идр.). Наиболее загрязнены тяжелыми металлами фосфорные и комплексные удобрения. Это связано с тем, что практически все фосфорные руды содержат большие количества стронция, редкоземельные и радиоактивные элементы. Расширение производства и применения фосфорных и комплексных удобрений ведет к загрязнению окружающей среды соединениями фтора, мышьяка. При существующих кислотных способах переработки природного фосфатного сырья степень утилизации соединений фтора в производстве суперфосфата не превышает 20—50%, в производстве комплексных удобрений — еще меньше. Содержание фтора в суперфосфате достигает 1—1,5, в аммофосе 3—5%. В среднем с каждой тонной необходимого растениям фосфора на поля поступает около 160 кг фтора.

В удобрениях, в отличие от природных фосфатных руд, фтор находится в виде растворимых соединений и легко поступает в растение. Повышенное накопление фтора в растениях нарушает обмен веществ, ферментативную активность (ингибирует действие фосфатазы и др.), отрицательно действует на фото- и биосинтез белка, развитие плодов. Фтористые соединения весьма опасны для здоровья людей и животных. Повышенные дозы фтора угнетают развитие животных, приводят к отравлению; у человека при содержании в воде фтора больше 2 мг/л разрушается эмаль зубов, а при 8 мг/л развивается остеосклероз.

Однако важно понимать, что не сами минеральные удобрения как источники биогенных элементов загрязняют окружающую среду, а их сопутствующие компоненты.

Что происходит с удобрениями в почве?

Внесенные в почву растворимые фосфорные удобрения в значительной степени поглощаются почвой и становятся малодоступными растениям и не передвигаются по почвенному профилю. Установлено, что первая культура после внесения фосфорных удобрений использует из них всего 10—30% Р205, а остальное количество остается в почве и претерпевает всевозможные превращения. Например, в кислых почвах фосфор суперфосфата в большей части превращается в фосфаты железа и алюминия, а в черноземных и во всех карбонатных почвах — в нерастворимые фосфаты кальция. Систематическое и длительное применение фосфорных удобрений сопровождается постепенным окультуриванием почв.

Известно, что длительное применение больших доз фосфорных удобрений может привести к так называемому «зафосфачиванию», когда почва обогащается усвояемыми фосфатами и новые порции удобрений не оказывают эффекта. В этом случае избыток фосфора в почве может нарушить соотношение между питательными веществами и иногда снижает доступность растениям цинка и железа. Так, в условиях Краснодарского края на обыкновенных карбонатных черноземах при обыкновенном внесении Р205 кукуруза неожиданно резко снижала урожайность. Приходилось изыскивать способы оптимизации элементного питания растений. Зафосфачивание почв является определенным этапом их окультуривания. Это результат неизбежного процесса накопления «остаточного» фосфора, когда удобрения вносятся в количестве, превышающем вынос фосфора с урожаем.

Как правило, этот «остаточный» фосфор удобрений отличался большей подвижностью, доступностью растениям, чем природные фосфаты почвы. При систематическом и длительном удобрении необходимо изменять соотношения между питательными элементами с учетом их остаточного действия: дозу фосфора следует уменьшать, а дозу азотных удобрений (иногда и калийных) увеличивать.

Калий удобрений, внесенный в почву, подобно фосфору, не остается в неизменном виде. Часть его находится в почвенном растворе, часть переходит в поглощенно-обменное состояние, а часть превращается в необменную, малодоступную для растений форму. Накопление доступных форм калия в почве, а также превращение в недоступное состояние в результате длительного применения калийных удобрений зависят в основном от свойств почвы и погодных условий. Так, в черноземных почвах количество усвояемых форм калия под влиянием удобрения хотя и увеличивается, но в меньшей мере, чем на дерново-подзолистых почвах, так как в черноземах калий удобрений больше превращается в необменную форму. В зоне с большим количеством осадков и при поливном земледелии возможно вымывание калия удобрений за пределы корнеобитаемого слоя почвы.

В районах с недостаточным увлажнением, в условиях жаркого климата, где почвы периодически увлажняются и пересыхают, наблюдаются интенсивные процессы фиксации калия удобрений почвой. Под влиянием фиксации калий удобрений переходит в необменное, малодоступное растениям состояние. Большое влияние на степень фиксации калия почвами имеют тип почвенных минералов, наличие минералов, обладающих высокой фиксирующей способностью. Таковыми являются глинные минералы. Черноземы обладают большей способностью фиксировать калий удобрений, чем дерново-подзолистые почвы.

Подщелачивание почвы, вызываемое внесением извести или естественными карбонатами, особенно содой, увеличивает фиксацию. Фиксация калия зависит от дозы удобрения: при повышении дозы вносимых удобрений процент фиксации калия уменьшается. В целях уменьшения фиксации почвами калия удобрений рекомендуется вносить калийные удобрения на достаточную глубину, чтобы исключить пересыхание, и чаще вносить их в севообороте, так как почвы, систематически удобрявшиеся калием, при новом его добавлении фиксируют его слабее. Но и фиксированный калий удобрений, находящийся в необменном состоянии, также участвует в питании растений, так как со временем он может переходить в обменно-поглощенное состояние.

Азотные удобрения по взаимодействию с почвой значительно отличаются от фосфорных и калийных. Нитратные формы азота почвой не поглощаются, поэтому они легко могут вымываться атмосферными осадками и поливными водами.

Аммиачные формы азота поглощаются почвой, но после их нитрификации приобретают свойства нитратных удобрений. Частично аммиак может поглощаться почвой необменно. Необменный, фиксированный аммоний растениям доступен в малой степени. Кроме этого, потеря азота удобрений из почвы возможна в результате улетучивания азота в свободной форме или в виде оксидов азота. При внесении азотных удобрений резко изменяется содержание нитратов в почве, так как с удобрениями поступают наиболее легко усвояемые растениями соединения. Динамика нитратов в почве в большей мере характеризует ее плодородие.

Весьма важным свойством азотных удобрений, особенно аммиачных, является их способность мобилизации почвенных запасов, что имеет большое значение в зоне черноземных почв. Под влиянием азотных удобрений органические соединения почвы быстрее подвергаются минерализации, превращаются в легкодоступные для растений формы.

Некоторое количество питательных веществ, особенно азота в виде нитратов, хлоридов и сульфатов, может проникнуть в грунтовые воды и реки. Следствием этого является превышение норм содержания этих веществ в воде колодцев, родников, что может быть вредным для людей и животных, а также ведет к нежелательному изменению гидробиоценозов и наносит ущерб рыбному хозяйству. Миграция питательных веществ из почв в грунтовые воды в разных почвенно-климатических условиях проходит неодинаково. Кроме этого, она зависит от видов, форм, доз и сроков применяемых удобрений.

В почвах Краснодарского края с периодически промывным водным режимом нитраты обнаруживаются до глубины 10 м и более и смыкаются с грунтовыми водами. Это свидетельствует о периодической глубокой миграции нитратов и включении их в биохимический круговорот, начальными звеньями которого являются почва, материнская порода, грунтовые воды. Такая миграция нитратов может наблюдаться во влажные годы, когда для почв характерен промывной водный режим. Именно в эти годы возникает опасность нитратного загрязнения окружающей среды при внесении больших доз азотных удобрений под зиму. В годы с непромывным водным режимом поступление нитратов в грунтовые воды полностью прекращается, хотя остаточные следы соединений азота наблюдаются по всему профилю материнской породы до грунтовой воды. Их сохранности способствует низкая биологическая активность этой части коры выветривания.

В почвах с непромывным водным режимом (южные черноземы, каштановые и др.) загрязнение биосферы нитратами исключается. Они остаются замкнутыми в почвенном профиле и полностью включаются в биологический круговорот.

Вредное потенциальное влияние азота, вносимого с удобрениями, может быть сведено к минимуму путем максимального использования азота сельскохозяйственными культурами. Итак, нужно заботиться, чтобы при повышении доз азотных удобрений увеличивалась эффективность использования их азота растениями, чтобы не оставалось большого количества неиспользованных растениями нитратов, которые не удерживаются почвами и могут вымываться осадками из корнеобитаемого слоя.

Растения имеют свойство накапливать в своих организмах нитраты, содержащиеся в почве в избыточных количествах. Урожайность растений растет, но продукция оказывается отравленной. Особенно интенсивно аккумулируют нитраты овощные культуры, арбузы и дыни.

В России приняты предельно допустимые концентрации (ПДК) нитратов растительного происхождения. Допустимая суточная доза (ДСД) для человека составляет 5 мг на 1 кг веса.

Сами нитраты не оказывают токсичного действия, но под влиянием некоторых кишечных бактерий они могут переходить в нитриты, обладающие значительной токсичностью. Нитриты, соединяясь с гемоглобином крови, переводят его в метгемоглобин, который препятствует переносу кислорода по кровеносной системе. Развивается заболевание — метгемоглобинемия, особенно опасное для детей. Симптомы заболевания: полуобморочное состояние, рвота, диарея.

Изыскиваются новые пути уменьшения потерь питательных веществ и ограничения загрязнения ими окружающей среды. Для уменьшения потерь азота из удобрений рекомендуются медленнодействующие азотные удобрения и ингибиторы нитрификации, пленки, добавки. Вводится капсулирование тонкозернистых удобрений оболочками серы, пластиков и др. Равномерное высвобождение азота из этих удобрений исключает накопление нитратов в почве. Большое значение для окружающей среды имеет применение новых, высококонцентрированных, комплексных минеральных удобрений. Для них характерно то, что они лишены балластных веществ (хлориды, сульфаты) или содержат их незначительное количество. Отдельные факты отрицательного влияния удобрений на окружающую среду связаны с ошибками в практике их применения, с недостаточно обоснованными способами, сроками,

Таким образом, применение минеральных удобрений является фундаментальным преобразованием в сфере производства вообще и главное в земледелии, что позволило коренным образом в глобальном плане и в нашей стране в частности решать проблему продовольствия и сельскохозяйственного сырья. Без применения удобрений сейчас сельское хозяйство не мыслимо.

При правильной организации и контроле применения минеральные удобрения не опасны для окружающей среды, здоровья человека и животных. Оптимальные научно-обоснованные дозы увеличивают урожайность растений и повышают количество продукции. К недостатку многих удобрений можно отнести наличие в них тяжелых металлов. Особенно загрязнены ими фосфорные удобрения. Поэтому необходим тщательный сертификационный контроль. Длительное применение физиологически кислых и щелочных туков может изменить реакцию почвенного раствора. Негативные последствия может иметь избыточное применение азотных удобрений. При этом урожайность растений увеличивается, но продукция оказывается загрязненной нитратами. Особенно интенсивно аккумулируют нитраты овощные культуры, арбузы и дыни. В крови организмов, в том числе и человека, нитраты, соединяясь с гемоглобином, препятствуют переносу кислорода и вызывают тяжелое заболеваниеметгемоглобинемию.

Необходимость применения химических средств защиты растений от вредителей и болезней определяется тем, что потери урожая без применения ядохимикатов могут составлять более 50%.

В зависимости от назначения химические вещества подразделяются на препараты для защиты растений от вредителей и болезней, гербициды и средства предуборочной обработки культур. Первая группа — наиболее обширная и включает в себя акарициды, бактерициды, гемато- циды, зооциды, лимациды, инсектициды, лаввициды, нематоциды, ови- циды, фунгициды и иные препараты. Чаще всего применяются инсектициды. Эти ядохимикаты могут включать в себя хлорорганические, фосфорорганические и неорганические соединения ртути, свинца, мышьяка и других элементов.

Гербициды применяются как средство избирательного уничтожения сорной растительности. Чаще всего используются различные химические препараты для защиты люцерны, кукурузы, сахарной свеклы, подсолнечника, озимой пшеницы. Из средств предуборочной обработки культур наибольшее применение нашли дефолианты и стимуляторы роста.

В целом в сельском хозяйстве России применяются сотни наименований химических средств.

Все яды, применяемые в сельском хозяйстве как средство борьбы с вредителями и болезнями растений, в большей или меньшей степени ядовиты для животных и человека. Широкое их применение оказывает всевозрастающее влияние не только на растения, но и на все живое население Земли. Примечательно, что лишь небольшая доза пестицидов достигает организмов, действительно подлежащих уничтожению. Значительная же их часть отрицательно действует на полезные организмы, в том числе обитающие в почвах. Ядохимикаты влияют на микрофлору и микрофауну почвы, вызывают заметные сдвиги в биохимических и микробиологических процессах, сопровождающихся повышенным образованием и выделением углекислого газа, аммиака, аминокислот и других продуктов метаболизма. При этом изменяется ход и интенсивность процессов распада органических веществ почвы — клетчатки, белка, сахаров. Пестициды снижают качество сельскохозяйственной продукции: ухудшаются хлебопекарные и пищевые свойства муки, повышается «водянистость» мяса. Опасность биоцидного загрязнения биосферы вообще и почв в частности усугубляется тем, что ядохимикаты обнаруживаются только трудновыполнимыми специфическими методами анализа, проявляются через заболевания и гибель организмов.

Здесь вступает в силу закон В. И. Вернадского о физико-химическом единстве всего живого вещества на планете. Вредный компонент для какой-то части живого вещества не может быть нейтральным для другой части, или вредный компонент для одних видов существ вреден и для других. Любые химические вещества, смертельные для одних организмов, не могут не оказывать вредного влияния на другие организмы. Массовая гибель разных животных организмов общеизвестна.

Перераспределение биоцидов по профилю и в горизонтальном направлении происходит под воздействием почвенной влаги, в результате диффузии с почвенным воздухом, в процессах сорбции и десорбции, миграции растворов, эмульсий, суспензий. Применение ядохимикатов и длительность их сохранения в почве зависят как от химического состава почв, так и от природы самих препаратов. Некоторые ядохимикаты претерпевают различные химические превращения, переходят в другие соединения, иногда более токсичные, чем исходные. Например, препарат гептохлор, являющийся сравнительно малоядовитым инсектицидом, под воздействием микроорганизмов почвы превращается в гептохлорэпатид, ядовитость которого в 4—5 раз выше.

При изучении последствий систематического применения физиологически активных соединений в биоценозах была установлена возможность их превращения в нетоксичные соединения путем полного разложения или образования нетоксичных комплексов. Это явление получило название детоксикации. Вся система использования сельскохозяйственных угодий должна быть направлена на полную и скорейшую детоксикацию всех биоцидов, поступающих в почвы.

Обычно выделяют группы физических, физико-химических, химических и биологических факторов детоксикации. К физическим факторам относят сорбцию биоцидов высокодисперсными минералами и органическими почвенными коллоидами. Этот процесс зависит от свойств почвы, природы и свойств адсорбента, климатических и экологических факторов. Так, внесенные в почву пестициды в период холодной и сырой погоды связываются верхним слоем почвы, поэтому предохраняются от вымывания и разложения. В период потепления они десорбируются и вновь проявляют свою активность. Спустя некоторое время после внесения пестицида в почве устанавливается равновесие между сорбированной и находящейся в растворе фракциями токсиканта. О степени десорбции токсиканта принято судить по содержанию его в жидкой фазе. К физическим факторам детоксикации относят также улетучивание и термическое разложение. Степень испарения токсикантов из почвы сильно зависит от ее влажности — сорбция легколетучих пестицидов сухой почвой гораздо выше, чем влажной. Разложение токсиканта усиливается с повышением температуры.

Из физико-химических факторов наиболее существенным является фоторазложение (фотолиз), главным действующим началом которого служат длинноволновые ультрафиолетовые лучи солнечной радиации. При этом происходит фотоокисление многих пестицидов и их метаболитов, находящихся на поверхности почвы, растений и водоемов. На втором этапе фотолитического разложения пестицида особое значение приобретает взаимодействие его с молекулами воды. Важную роль играют pH раствора, температура, состав газов, свойства присутствующих в воде соединений. Под действием коротковолновой части солнечной радиации многие фенолы и близкие им соединения способны превратиться в гидрохинон и пирокатехин, которые могут гидроксилиро- ваться до тетраоксибензола. Последний в результате окислительного конденсирования может превращаться в стабильные полимеризован- ные продукты. В результате фотолиза многие пестициды трансформируются в менее токсичные продукты.

Химические превращения пестицидов в почве и водной среде в основном представляют собой гидролитические и окислительные процессы. Скорость этих процессов зависит от вида и числа атомов галоидов, длины углеводородной цепочки. Увеличение контакта токсиканта с почвой ускоряет гидролиз (например, коллоидная фракция почвы катализирует реакции пестицидов с различными активными частицами почвенных компонентов). Значительная роль в химическом разложении пестицидов принадлежит свободно-радикальным процессам. Источниками свободных радикалов в почве являются гуминовые кислоты, а также смолы, пигменты, антибиотики, витамины.

Биологическое превращение и разложение пестицидов в почве обусловлено главным образом микробиологической детоксикацией. Установлено, что микробиологическое разложение пестицидов является главным путем детоксикации почв, а всякая активизация микробиологической деятельности содействует исчезновению ядохимикатов из почв.

Скорость микробиологического разложения пестицидов в почве определяется содержанием гумуса, температурой и влажностью почвы, наличием подстилки, содержанием питательных веществ и другими факторами. Хорошие условия для развития почвенных микроорганизмов интенсифицируют биологическую детоксикацию пестицидов.

На скорость разложения пестицидов в почве оказывают влияние механический состав почвы, реакция ее среды, гидротермические условия. На суглинистых почвах пестициды разлагаются быстрее, чем в почвах легкого состава; хлорорганические пестициды в кислой почве сохраняются дольше, нежели в щелочной. Органическое вещество почвы связывает многие пестициды в водно-нерастворимые и мало доступные для почвенных организмов формы, вследствие чего токсиканты не подвергаются гидролизу и несмотря на высокую биологическую активность гумусированных почв сохраняются в них длительное время. Повышенная температура почвы способствует десорбции пестицидов, связанных коллоидами. На эти процессы также влияют окислительно-восстановительные условия почвы: одни пестициды быстрее метаболируются в анаэробных условиях, другие — в аэробных.

Таким образом, управлять процессами разложения пестицидов в почве можно лишь при детальном знании ее свойств и факторов, определяющих эти процессы. Поэтому меры защиты почв от накопления ядохимикатов основываются на детальном изучении свойств почв и поведения токсикантов, их биологической активности, погодно-климатических, агротехнических, геоморфологических условий. Для каждой почвенно-климатической зоны страны должны разрабатываться свои рекомендации по применению и обезвреживанию пестицидов в сельскохозяйственных угодьях с учетом остаточного токсического действия и длительности сохранения их в почве.

Частично судьбу пестицидов в почве удается регулировать агротехническими приемами — обработкой, применением орошения и удобрений, выбором сорта и культуры, способом внесения токсикантов, его глубиной, сроком. В посевах пропашных культур и на паровых участках вследствие лучшей аэрации детоксикация пестицидов, по-видимому, происходит более интенсивно, чем в посевах зерновых. Здесь же необходимо отметить, что корне- и клубнеплоды поглощают и выносят ядохимикаты в больших количествах, нежели другие культуры.

Рекомендовано в ряде случаев заменять сплошную обработку посевов ленточной, которая не уступает первой по эффективности. Приняты меры ответственности за строгим соблюдением правил хранения и расходования ядохимикатов в сельском и лесном хозяйствах страны.

Однако почва — не единственный объект ландшафта, где концентрируются пестициды. Они фиксируются в грунтовых водах, родниках, открытых водоемах, накапливаются практически во всех живых организмах, растениях, наземных животных, птицах, насекомых, в фауне водных объектов. Стала закономерностью их постоянная миграция по цепям питания организмов, включая человека.

Главным условием резкого сокращения поступления биоцидов в окружающую среду, в том числе и в почвы, академик М. С. Гиляров считал организацию современного культурного ландшафта, обязательным компонентом которого выступают лесопосадки, защитные лесополосы, что значительно повышает устойчивость биоценозов вследствие увеличения многообразия видов. Фактором естественной защиты является концентрация в лесополосах насекомоядных птиц, насекомых-энтомо- фагов, истребляющих вредителей. Поэтому основной предпосылкой интегрированной борьбы с вредителями служит правильная организация всего ландшафта, а не только севооборота. При этом осуществляется комплекс агрохимических приемов с использованием естественных врагов вредителей, а применение пестицидов ограничивается своевременной обработкой местных очагов их появления.

Система использования сельскохозяйственных угодий должна быть направлена на полную и скорейшую детоксикацию всех биоцидов, поступивших в почвы. Микробиологическое разложение биоцидов — главный путь детоксикации почв, а всякая активизация микробиологической деятельности содействует исчезновению ядохимикатов из почв.

Сегодня вряд ли можно полностью отказаться от применения ядохимикатов. Но нужно быть осторожным с их дозировкой, транспортировкой, хранением и т. д. Рациональное использование пестицидов должно осуществляться путем снижения норм расхода препаратов, оптимизации сроков и способов применения, подбора препаратов, наиболее безвредных для среды и человека, сокращения обработок на основе учета экологических и экономических порогов вредности фитофагов.

В настоящее время разработаны и используются малотоксичные, высокоспецифичные и быстродеградирующие в почве пестициды нового поколения с низкой нормой расхода.

Хорошо известны биологически безвредные для здоровья людей методы борьбы с вредителями. К сожалению, их применяют крайне редко. Кроме того, ощущается острый дефицит специалистов по защите растений. Их практически нет, а экологическая безграмотность в защите растений приводит к трудноисправимым негативным последствиям.

Нельзя оставлять без внимания развивающийся сектор индивидуального садоводства, постоянно и бесконтрольно поставляющий на рынки далеко не чистую, хотя и красивую продукцию. Широкая пропаганда безъядохимикатного возделывания овощей и фруктов должна быть неотложной. Известны многие простые и безвредные способы защиты растений в индивидуальном секторе: это использование коровяка, настоев из побегов помидоров, ботвы картофеля, табака, различные ловушки с пахучими веществами и др.

Против колорадского жука применяется опрыскивание растений настоем зеленого перца чили, смешанного с чесноком и табаком. Против тлей, гусениц бабочек эффективен пиретрум (пудра ромашки). Инсектицидными свойствами обладают препараты из лука, чеснока, живокости, сафоры, молочая, хрена, горчицы, петрушки, белены.

Эффективны в защите растений разведение и выпуск в агроэкосистемы божьей коровки, жужелиц, трихограммы, муравьев и других хищников и паразитов.

Таким образом, пестицидыядохимикаты для борьбы с сорняками (гербициды), с грибковыми болезнями растений (фунгициды) и вредителями (зооциды, инсектициды и др.). В зависимости от назначения химические вещества подразделяются на препараты для защиты растений от вредителей и болезней, гербициды и средства предуборочной обработки культур. Первая группанаиболее обширная и включает в себя бактерициды, гематоциды, акарициды, зооциды, лимациды, инсектициды, нематоциды, овициды, фунгициды и иные препараты. Чаще всего применяются инсектициды. Эти ядохимикаты могут включать в себя хлороганические, фосфорорганические и неорганические соединения ртути, свинца, мышьяка и других элементов. Все яды, применяемые в сельском хозяйстве, в разной степени ядовиты для человека и животных. Однако сейчас без них нельзя обойтись. Растения, как и человек, нуждаются в фармацевтической защите. Но следует помнить золотое правило Парацелъса: «Все яд, дело в количестве». Поэтому нужно быть осторожным с дозировкой, транспортировкой, хранением и т. д. Рациональное использование пестицидов должно осуществляться путем снижения норм расхода препаратов, оптимизации сроков и способов применения, подбора препаратов, наиболее безвредных для среды и человека, сокращения обработок на основе учета экологических и экономических порогов вредности фитофагов. Хорошо известны биологически безвредные для здоровья людей методы борьбы с вредителями. Главные условия создания чистых агроценозов и ландшафтоввсемерное сокращение применения ядохимикатов, высокая техника, использование биологических средств защиты растений и устойчивых к болезням и вредителям сортов.

В почвах присутствуют почти все известные в природе химические элементы, в том числе и радионуклиды.

Радионуклиды — химические элементы, способные к самопроизвольному распаду с образованием новых элементов, а также образованные изотопы любых химических элементов. Следствием ядерного распада является ионизирующая радиация в виде потока альфа-частиц (поток ядер гелия, протонов) и бета-частиц (поток электронов), нейтронов, гамма-излучение и рентгеновское излучение. Это явление получило название радиоактивность. Химические элементы, способные к самопроизвольному распаду, называются радиоактивными. Наиболее употребляемый синоним ионизирующей радиации — радиоактивное излучение.

Ионизирующее излучение — поток заряженных или нейтральных частиц и электромагнитных квантов, взаимодействие которых со средой приводит к ионизации и возбуждению ее атомов и молекул. Ионизирующие излучения имеют электромагнитную (гамма- и рентгеновское излучения) и корпускулярную (альфа-излучение, бета-излучение, нейтронное излучение) природу.

Гамма-излучение — это электромагнитное излучение, обусловленное гамма-лучами (дискретными пучками, или квантами, называемыми фотонами), если после альфа- или бета-распада ядро остается в возбужденном состоянии. Гамма-лучи в воздухе могут проходить значительные расстояния. Фотон гамма-лучей с высокой энергией может проходить сквозь тело человека. Интенсивное гамма-излучение может повредить не только кожу, но и внутренние органы. Защищают от этого излучения плотные и тяжелые материалы, железо, свинец. Гамма-излучение можно создавать искусственно в ускорителях заряженных частиц (микротрон), например тормозное гамма-излучение быстрых электронов ускорителя при их попадании на мишень.

Рентгеновское излучение аналогично гамма-излучению. Космическое рентгеновское излучение поглощается атмосферой. Рентгеновские лучи получают искусственно, они приходятся на нижнюю часть энергетического спектра электромагнитного излучения.

Радиоактивное излучение — естественный фактор в биосфере для всех живых организмов, да и сами живые организмы обладают определенной радиоактивностью. Среди биосферных объектов почвы обладают наиболее высокой естественной степенью радиоактивности.

Однако в XX в. человечество столкнулось с уровнями радиоактивности, запредельно превышающей естественную. Это связано с применением ядерного оружия, авариями на объектах атомной энергетики, все возрастающим количеством радиоактивных отходов на планете (Хиросима и Нагасаки, испытания атомного и ядерного оружия, многие катастрофы, в том числе на Чернобыльской АЭС (СССР, 1986 г.), на АЭС «Фу- кусима-1» (Япония, 2011 г.) и т. д.).

Наиболее значимыми объектами биосферы, определяющими биологические функции всего живого, являются почвы.

Радиоактивность почв обусловлена содержанием в них радионуклидов. Различают естественную и искусственную радиоактивность.

Естественная радиоактивность почв вызывается естественными радиоактивными изотопами, которые всегда в тех или иных количествах присутствуют в почвах и почвообразующих породах. Естественные радионуклиды подразделяют на три группы.

Первая группа включает радиоактивные элементы — элементы, все изотопы которых радиоактивны: уран (238и, 235и), торий (232ТЬ), радий (226Яа) и радон (222Яп, 22011п). Во вторую группу входят изотопы «обычных» элементов, обладающие радиоактивными свойствами: калий (40К), рубидий (87ЯЬ), кальций (48Са), цирконий {чьЪх) и др. Третью группу составляют радиоактивные изотопы, образующиеся в атмосфере под действием космических лучей: тритий (3Н), бериллий (7Ве, юВе) и углерод (14С).

По способу и времени образования радионуклиды подразделяют на: первичные — образовавшиеся одновременно с образованием планеты (40К, 48Са, 238и); вторичные продукты распада первичных радионуклидов (всего 45 — 232ТЬ, 235и, 22011п, 222Яп, 226Ка и др.); индуцированные — образовавшиеся под действием космических лучей и вторичных нейтронов (14С, 3Н, 24Ыа). Всего насчитывают более 300 природных радионуклидов.

Валовое содержание естественных радиоактивных изотопов в основном зависит от почвообразующих пород. Почвы, сформировавшиеся на продуктах выветривания кислых пород, содержат радиоактивных изотопов больше, чем образовавшиеся на основных и ультраосновных породах; тяжелые почвы содержат их больше, чем легкие.

Естественные радиоактивные элементы распределяются по профилю почв обычно относительно равномерно, но в некоторых случаях они аккумулируются в иллювиальных и глеевых горизонтах. В почвах и породах они присутствуют преимущественно в прочносвязанной форме.

Искусственная радиоактивность почв обусловлена поступлением в почву радиоактивных изотопов, образующихся в результате атомных и термоядерных взрывов, в виде отходов атомной промышленности или в результате аварий на атомных предприятиях. Образование изотопов в почвах может происходить вследствие наведенной радиации. Наиболее часто искусственное радиоактивное загрязнение почв вызывают изотопы 235и, 238и, 239Ри, 1291, 1311, 144Се, 140Ва, 10611и, 908г, 137Сз и др.

Экологические последствия радиоактивного загрязнения почв заключаются в следующем. Включаясь в биологический круговорот, радионуклиды через растительную и животную пищу попадают в организм человека и, накапливаясь в нем, вызывают радиоактивное облучение. Радионуклиды, подобно многим другим загрязняющим веществам, постепенно концентрируются в пищевых цепях.

В экологическом отношении наибольшую опасность представляют 9°5г и |37Сб. Это обусловлено длительным периодом их полураспада (28 лет 90Бг и 33 года 137Сз), высокой энергией излучения и способностью легко включаться в биологический круговорот, в цепи питания. Стронций по химическим свойствам близок к кальцию и входит в состав костных тканей, а цезий близок к калию и включается во многие реакции живых организмов.

Искусственные радионуклиды закрепляются в основном (до 80— 90%) в верхнем слое почвы: на целине — в слое 0—10 см, на пашне — в пахотном горизонте. Наибольшей сорбцией обладают почвы с высоким содержанием гумуса, тяжелым гранулометрическим составом, богатые монтмориллонитом и гидрослюдами, с непромывным типом водного режима. В таких почвах радионуклиды способны к миграции в незначительной степени. По степени подвижности в почвах радионуклиды образуют ряд 908г > 10611и > 137Се > 1291 > 239Ри.

Скорость естественного самоочищения почв от радиоизотопов зависит от скоростей их радиоактивного распада, вертикальной и горизонтальной миграции. Период полураспада радиоактивного изотопа — время, необходимое для распада половины количества его атомов (табл. 4.9).

Таблица 4.9

Характеристика радиоактивных веществ

Элемент

Период

полураспада

Элемент

Период

полураспада

14С

5568 лет

90

28 лет

42К

12,4 часа

137С5

33 года

65гп

250 суток

239ри

2,4 • 104 лет

131|

8 суток

О'

о

П

О

5,27 лет

Действие радиации зависит от энергии излучения, т. е. числа частиц, вылетающих в единицу времени. Сила излучения измеряется в бек- керелях (1 Бк = 1 распад в секунду) или кюри (1 Ки = 3,7 • 1010 Бк). Дозу излучения, поражающую организм, находят путем измерения количества поглощенной им энергии. В качестве единиц измерения радиоактивности используют также Кл/кг (1 Кл/кг = 3876 рентген); грей (1 Гр = 1 Дж/кг = 100 рад); зиверт (1 Зв = 100 бэр). В дозиметрии почв используют следующие понятия: удельная (Бк/кг), объемная (Бк/м3) и поверхностная (Бк/м2) радиационная активность. Чаще всего на практике об уровне радиоактивности судят по гамма-излучению, в силу его наибольшей проницаемости и распространимости в окружающей среде. 1 рентген — это такая доза фотонного излучения, при которой в 1 см3 воздуха в процессе ионизации образуется 2,079 • 109 пар ионов каждого знака. Обычный уровень радиации в Ростовской области и Краснодарском крае составляет 10—15 мкР/час.

Радиоактивность в живых организмах обладает накопительным эффектом. Для человека величина ЛД50 (летальная доза, облучение в которой вызывает 50%-ную гибель биообъектов) составляет 2,5—3,5 Гр.

Доза 0,25 Гр считается условно нормальной для внешнего облучения. Облучение всего тела человека дозой 0,75 Гр и облучение щитовидной железы дозой 2,5 Гр от радиоактивного йода Ш1 требуют мер по радиационной защите населения.

Особенность радиоактивного загрязнения почвенного покрова заключается в том, что количество радиоактивных примесей чрезвычайно мало и они не вызывают изменений основных свойств почвы — pH, соотношения элементов минерального питания, уровня плодородия. Поэтому в первую очередь следует лимитировать (нормировать) концентрации радиоактивных веществ, поступающих из почвы в продукцию растениеводства.

Поскольку в основном радионуклиды являются тяжелыми металлами, основные проблемы и пути нормирования, санации и охраны почв от загрязнения радионуклидами и тяжелыми металлами в большей степени сходны и зачастую могут рассматриваться вместе.

Таким образом, радиоактивность почв обусловлена содержанием в них радионуклидов. Естественная радиоактивность почв вызвана естественными радиоактивными изотопами, которые всегда в тех или иных количествах присутствуют в почвах и почвообразующих породах. Искусственная радиоактивность почв обусловлена поступлением в почву радиоактивных изотопов, образующихся в результате атомных и термоядерных взрывов, в виде отходов атомной промышленности или в результате аварий на атомных предприятиях. Наиболее часто искусственное радиоактивное загрязнение почв вызывают изотопы

235и, 238ц 239ри^ 12Ц 13Ц 144^ 140^ 90^ 137^ ц щ д ИнтвНСивНОСтЬ

радиоактивного загрязнения на конкретной территории определяется двумя факторами:

  • концентрацией радиоактивных элементов и изотопов в почвах;
  • природой самих элементов и изотопов, которая в первую очередь детерминируется периодом полураспада.

В экологическом отношении наибольшую опасность представляют 9(>5г и 137С5. дни прочно закрепляются в почвах, характеризуются длительным периодом полураспада (90Бг — 28 лет и 137Сб — 33 года) и легко включаются в биологический круговорот как элементы, близкие к Са и К. Накапливаясь в организме, они являются постоянными источниками внутреннего облучения.

Санитарно-биологическая чистота почвенного покрова — основополагающее условие оптимальной экологической ситуации для человека и животных. В то же время именно человек и животные являются первопричиной биологического загрязнения своих местообитаний, включая почвы.

По степени опасности биологическое загрязнение почв можно разделить на микробиологическое, гельминтологическое и энтомологическое.

Несмотря на то что каждое таксономическое подразделение микроорганизмов несет определенное важное биологическое значение, многие микробы почвы являются опасными, а часто — губительными для человека. Такие формы микробов называют патогенными. В процессе эволюционного развития и адаптации к живым организмам патогенные микроорганизмы приобрели паразитические свойства. Они связаны с растительным и животным миром, могут переходить с почвенной влагой в водоемы, воздушными потоками переноситься в атмосферу.

Болезнетворные микроорганизмы могут сохраняться в почвенной среде длительное время. Так, например, споры палочки сибирской язвы остаются жизнеспособными в почве до 15 лет. Благодаря этому почва может играть определенную эпидемиологическую роль в распространении отдельных инфекционных заболеваний. При загрязнении вместе с почвой проникают споры возбудителей газовой гангрены и столбняка. Немаловажное значение имеет почва для последовательной передачи инфекций во внешней среде, так как попавшие в нее патогенные микроорганизмы в дальнейшем распространяются через воду, растительную продукцию, вызывая холеру, дизентерию, тиф и т. д. или посредством насекомых, грызунов, скота провоцируя туляремию, чуму, сибирскую язву и т. д.

Несмотря на то что почва не является естественной средой обитания большинства патогенных микроорганизмов, болезнетворные микробы широко распространены в почвенных субстратах, способны длительное время в них сохраняться (до нескольких лет), играя значительную роль в возникновении эпидемий.

В черноземах довольно часто распространены патогенные анаэробные и аэробные бактерии. Из группы анаэробов следует выделить возбудителей газовой гангрены — раневой инфекции, вызываемой обычно ассоциацией из нескольких видов патогенов и реже — одним из них.

Большинство микроскопических грибов, обитающих в почве, являются сапрофитами, и только немногие их них патогенны для человека и животных. Чаще всего они вызывают различные поражения кожных покровов, волос и ногтей, но встречаются виды, которые поражают внутренние органы, провоцируют аллергические заболевания. Заболевания, вызываемые грибами, носят названия микозов.

Гельминтологические показатели определяют степень фекального загрязнения почвы, т. е. позволяют оценить степень и давность загрязнения. Обнаружение большого количества яиц гельминтов указывает на недавнее загрязнение. Оценивая давность загрязнения, следует учитывать сроки развития и продолжительность выживания яиц гельминтов в почве. Так, например, яйца аскарид могут сохранять жизнеспособность до 10 лет. Для других гельминтов этот срок исчисляется месяцами (3—4) или днями. Нахождение небольшого количества деформированных яиц аскарид может служить показателем, подтверждающим давнее загрязнение.

Гельминтологические исследования внешней среды используют при проведении контроля за содержанием детских, лечебных, оздоровительных учреждений, пищевых предприятий и т. д., где возможен контакт людей с загрязненной почвой (детские площадки, огороды, сады, парки, оранжереи). Эти исследования проводят также при оценке эффективности работы сооружений по обезвреживанию жидких и твердых отбросов (поля ассенизации и запахивания, усовершенствованные свалки, поля компостирования, мусороперерабатывающие заводы). Санитарно-показательными гельминтами считаются аскариды, власоглавы, анкилостомы. Для некоторых районов, где отсутствуют или редко встречаются геогельминтозы, показателем фекального загрязнения может быть наличие яиц биогельминтов: онкосфер тениид, широкого лен- теца и др.

Многие микроорганизмы, обитающие в почвах, являются патогенными: они опасны и даже губительны для человека и животных. Болез- нетворность организмов в почвенной среде может сохраняться длительное время. В связи с этим почва играет определенную эпидемиологическую роль в распространении отдельных инфекционных заболеваний.

Немаловажное значение имеют почвы для последовательной передачи инфекций во внешней среде, так как попавшие в них патогенные микробы в дальнейшем распространяются через воду и растительную продукцию, вызывая холеру, дизентерию, тиф и т. д. или посредством насекомых, грызунов, скота и других животных провоцируя туляремию, чуму, сибирскую язву и т. п. Вместе с почвой в организмы проникают споры возбудителей газовой гангрены и столбняка. Болезнетворные микроорганизмы могут попадать в дьосательные пути человека вместе с пылеватыми частицами почвенного происхождения, вызывая пневмонию, скарлатину, туберкулез, микозы и др.

Почвенный фактор играет специфическую роль в передаче заразного начала для некоторых видов геогельминтов (анкилостомиды, аскариды, власоглав). Существенна роль почвы в сохранении споровых форм возбудителей сибирской язвы, столбняка и газовой гангрены. Заражение почвы бактериями сибирской язвы вызывает кожную форму заболевания на ногах у лиц, ходящих босиком. Большое эпидемиологическое значение имеет загрязнение почвы для развития раневых инфекций и, в меньшей степени, кишечных инфекций.

Важно знать: почвы имеют особое эпидемиологическое значение и требуют постоянного глубокого анализа их санитарно-бактериологического состояния. Особенно велик потенциал патогенных микроорганизмов вблизи крупных городских центров, населенных мест с развитым сельскохозяйственным производством.

 
<<   СОДЕРЖАНИЕ ПОСМОТРЕТЬ ОРИГИНАЛ   >>