Полная версия

Главная arrow Товароведение arrow Техническое черчение

  • Увеличить шрифт
  • Уменьшить шрифт


<<   СОДЕРЖАНИЕ   >>

4.2. Плоскости проекций

По изображению предмета на одной плоскости проекций во многих случаях нельзя судить о его форме и размерах. Предметы, показанные на рис. 4.3, – прямоугольная пластинка, треугольная призма, прямоугольный параллелепипед и параллелепипед с частью цилиндра, – дают в этом случае одинаковые проекции в виде прямоугольника.

По одной проекции можно судить лишь о двух измерениях предмета.

Но и две проекции предмета часто недостаточно полно отображают его форму. Так, например, две проекции прямоугольного параллелепипеда (рис. 4.3, а, б) неоднозначно отображают его форму. Такие две проекции могут иметь и треугольная призма (рис. 4.3, в), и призма с закруглением (рис. 4.3, г), и т.д.

Проекции разных по форме предметов на одну плоскость

Рис. 4.3. Проекции разных по форме предметов на одну плоскость

Чтобы получить полное представление о форме и размерах предмета, его нужно спроецировать на две, три или более плоскостей. Для простоты проецирования эти плоскости располагают взаимно перпендикулярно. Таким образом, три плоскости образуют прямой трехгранный угол (рис. 4.4, а). Каждой плоскости даны название и обозначение (рис. 4.4б а, б).

Плоскости проекций

Рис. 4.4. Плоскости проекций

Вертикальная плоскость, расположенная прямо перед нами, называется фронтальной плоскостью проекций. Она обозначается латинской буквой π2. Под прямым углом к ней горизонтально располагается плоскость проекций, называемая горизонтальной плоскостью. Она обозначается латинской буквой π1. Перпендикулярно этим плоскостям располагается еще одна вертикальная плоскость, обозначенная буквой π3, называемая профильной плоскостью проекций. Попарное пересечение плоскостей трехгранного угла образует прямые линии – оси проекций, исходящие из точки О. Пересечение фронтальной и горизонтальной плоскостей проекций образует ось х, фронтальной и профильной – ось z1, профильной и горизонтальной – ось у (рис. 4.4, б).

На рис. 4.4, а изображен трехгранный угол. Его грани взаимно перпендикулярны и не лежат в одной плоскости. Однако чертеж выполняется на плоскости. Для того чтобы изображения, полученные на сторонах трехгранного угла, оказались в одной плоскости, две грани этого угла развертывают до совмещения с третьей гранью, т.е. до такого положения, когда все три плоскости трехгранного угла окажутся в одной плоскости. Для этого горизонтальную плоскость поворачивают вокруг оси х вниз на 90°, профильную плоскость – вокруг оси z на 90° вправо, как показано стрелками. Тогда обе эти плоскости совмещаются с неподвижной фронтальной. При этом горизонтальная плоскость располагается под фронтальной, а профильная – справа от нее (рис. 4.4, б).

Ось у как бы распадается на две: у и у1.

Линии, ограничивающие плоскости проекций квадратами, взяты условно и значения не имеют, поэтому их обычно не проводят. Тогда плоскости проекций изобразятся, как показано на рис. 4.4, в.

4.3. Комплексный чертеж предмета

Изучив, как строят проекции точек, отрезков прямых и плоских фигур, т.е. элементов, которые ограничивают различные предметы (изделия или их составные части), можно перейти к рассмотрению способов получения прямоугольных изображений самих предметов.

На рис. 4.5, а представлен прямой трехгранный угол. Перед его плоскостями помещен изображаемый предмет – упор. Он расположен так, чтобы возможно большее число его граней было параллельно или перпендикулярно плоскостям проекций. Это значительно облегчает процесс проецирования.

Образование комплексного чертежа

Рис. 4.5. Образование комплексного чертежа

Чтобы получить прямоугольные проекции изображаемого предмета, необходимо провести проецирующие лучи перпендикулярно плоскостям проекций.

Спроецируем упор на фронтальную плоскость проекций π2. Точки пересечения проецирующих лучей с этой плоскостью дадут проекции вершин упора. Соединив соответствующим образом эти точки, получим фронтальную проекцию, или вид спереди. Вид спереди называют также главным видом.

Построим проекцию упора на горизонтальной плоскости проекции π1 – вид сверху. Для этого опустим на горизонтальную плоскость перпендикуляры, проходящие через вершины упора, и полученные точки их пересечения с плоскостью соединим отрезками прямых.

Проведя проецирующие лучи на профильную плоскость проекций π3 и выполнив построения, аналогичные предыдущим, получим профильную проекцию изображаемого предмета – вид слева.

Сравнивая наглядное изображение упора с его проекциями (рис. 4.5, а) и вспоминая изученное, можно установить следующее.

Во-первых, проекции упора на каждой из плоскостей проекций π2, π1, π3 представляют собой изображения не только одной стороны детали, но и всего предмета, всех его вершин, ребер и граней, если на горизонтальной и профильной проекциях штриховыми линиями показать невидимый сверху и слева контур детали. На фронтальной плоскости проекций видна лишь передняя грань упора. Это происходит потому, что боковые грани, перпендикулярные плоскости проекций, изобразились на ней в виде отрезков прямых. Грани, параллельные соответствующим плоскостям проекций, изображаются без искажения размеров.

Во-вторых, ребра, перпендикулярные плоскости проекций, изобразились на ней в виде точек (например, ребро АВ на горизонтальной плоскости проекций), а ребра, параллельные плоскости проекций, изобразились на ней в натуральную величину (например, ребро АВ на фронтальной и профильной плоскостях проекций).

В-третьих, наклонная грань упора ни на одной плоскости проекций не изобразилась в натуральную величину, хотя размер одной стороны этой грани можно измерить по проекции ее ребра, параллельного фронтальной плоскости проекций, а размер другой – по проекции ребра, параллельного горизонтальной и профильной плоскостям проекций, на одной из них.

Развернем плоскости проекций так, как это было показано на рис. 4.4, чтобы совместить их в плоскости чертежа (рис. 4.5, б). Фронтальная плоскость π2 при этом остается неподвижной, горизонтальная π1 поворачивается вокруг оси х вниз на 90°, профильная π3 поворачивается вокруг оси z на 90° вправо. Тогда виды расположатся так: вид сверху – под главным видом, а вид слева – справа от главного вида и на уровне его.

Фронтальные и горизонтальные проекции одноименных точек находятся при этом на одних перпендикулярах к оси х (например, фронтальная а' и горизонтальная а проекции точки А[1], а их фронтальные и профильные проекции располагаются на одних перпендикулярах к оси z (например, фронтальная а' и профильная а" проекции точки А). Эти перпендикуляры называют линиями связи. Таким образом, все три проекции упора оказываются связанными между собой. Положение любых двух проекций определяет положение третьей.

На чертежах не проводят рамки, ограничивающие плоскости проекций, и линии связи (см. рис. 4.4, в). Удалив их, мы получим чертеж, представленный на рис. 4.5, в.

Иногда изображения предмета на совмещенных плоскостях проекций называют комплексным чертежом.

Так строят чертежи в системе прямоугольных проекций. Однако нас интересует не только построение чертежей, но и чтение их, т.е. процесс представления пространственной формы предмета по его плоским изображениям.

Для того чтобы прочитать чертеж, нужно представить себе, в результате чего получилось на нем то или иное изображение, подумать, какое тело могло дать рассматриваемые проекции. При этом нельзя рассматривать проекции изолированно одну от другой. Необходимо мысленно объединить в единое целое представления о всех проекциях, данных на чертеже. 1

  • [1] Горизонтальные проекции точек будем обозначать без штриха (а), фронтальные – с одним штрихом (а') и профильные – с двумя штрихами (в"). Читается: "а малое штрих", "а малое два штриха".
 
<<   СОДЕРЖАНИЕ   >>