Полная версия

Главная arrow Экология arrow Биоценология

  • Увеличить шрифт
  • Уменьшить шрифт


<<   СОДЕРЖАНИЕ ПОСМОТРЕТЬ ОРИГИНАЛ   >>

Разнокачественность форм жизни и биогенный круговорот.

Специфическое свойство жизни — обмен веществ со средой. Любой организм должен получать из внешней среды определенные вещества как источники энергии и материал для построения собственного тела. Продукты метаболизма, уже непригодные для дальнейшего использования, выводятся наружу. Таким образом, каждый организм или множество одинаковых организмов (популяция, вид) в процессе своей жизнедеятельности ухудшают условия своего обитания. Возможность обратного процесса — поддержания жизненных условий или даже их улучшения, — о чем говорилось выше, определяется тем, что биосферу населяют разные организмы (виды) с разным типом обмена веществ.

Физиологическая разнокачественность живых организмов представляет собой фундаментальное условие устойчивого существования жизни как планетарного явления. Теоретически можно представить возникновение жизни в одной форме, но в этом случае запрограммирована конечность жизни как явления: видоспецифичность обмена веществ неизбежно ведет к исчерпанию ресурсов и «загрязнению» среды продуктами жизнедеятельности, которые невозможно использовать вторично.

Устойчивое существование жизни возможно лишь при многообразии, разнокачественности ее форм, специфика обмена которых обеспечивает последовательное использование выделяемых в среду продуктов метаболизма, формирующее генеральный биогенный круговорот веществ. Это отмечал еще В. И. Вернадский: «Геохимика может интересовать только проблема создания комплекса жизни в биосфере, т. е. создание биосферы» (В. И. Вернадский, 1967).

В простейшем виде такой комплементарный набор качественных форм жизни представлен продуцентами, консументами и редуцентами, совместная деятельность которых обеспечивает извлечение определенных веществ из внешней среды, их трансформацию на разных уровнях трофических цепей и минерализацию органического вещества до составляющих, доступных для очередного включения в круговорот1.

Продуценты — это живые организмы, которые способны синтезировать органическое вещество из неорганических составляющих с использованием внешних источников энергии. (Отметим, что получение энергии извне — общее условие жизнедеятельности всех организмов; по энергии все биологические системы — открытые.) Их называют также автотрофами, поскольку они сами снабжают себя органическим веществом. В природных сообществах продуценты выполняют функцию производителей органического вещества, накапливаемого в тканях этих организмов. Органическое вещество служит и источником энергии для процессов жизнедеятельности; внешняя энергия используется лишь для первичного синтеза.

Все продуценты по характеру источника энергии для синтеза органических веществ подразделяются на фотоавтотрофов и хемоавто- трофов. Первые используют для синтеза энергию солнечного излучения в части спектра с длиной волны 380—710 нм. Это главным образом зеленые (хлорофиллоносные) растения, но к фотосинтезу способны и представители некоторых других царств органического мира. Среди них особое значение имеют цианобактерии (синезеленые «водоросли»), которые, по-видимому, были первыми фотосинтетиками в эволюции жизни на Земле. Способны к фотосинтезу также многие бактерии, которые, правда, используют особый пигмент — бактериох- лорин — и не выделяют при фотосинтезе кислород. Основные исходные вещества, используемые для фотосинтеза, — диоксид углерода и вода (основа для синтеза углеводов), а также азот, фосфор, калий и другие элементы минерального питания.

Создавая органические вещества на основе фотосинтеза, фотоавто- трофы, таким образом, связывают использованную солнечную энергию, как бы запасая ее. Последующее разрушение химических связей ведет к высвобождению такой «запасенной» энергии. Это относится не только к использованию органического топлива; «запасенная» в тканях растений энергия передается в виде пищи по трофическим цепям и служит основой потоков энергии, сопровождающих биогенный круговорот веществ.

Хемоавтотрофы в процессах синтеза органического вещества используют энергию химических связей. К этой группе относятся только прокариоты: бактерии, архебактерии и отчасти синезеленые. Химическая энергия высвобождается в процессах окисления минеральных веществ. Экзотермические окислительные процессы используются нитрифицирующими бактериями (окисляют аммиак до нитритов, а затем до нитратов), железобактериями (окисление закисного железа до окис- ного), серобактериями (сероводород до сульфатов). Как субстрат для окисления используется также метан, СО и некоторые другие вещества.

При всем многообразии конкретных форм продуцентов-автотро- фов их общая биосферная функция едина и заключается в вовлечении элементов неживой природы в состав тканей организмов и таким образом в общий биологический круговорот. Суммарная масса автотро- фов-продуцентов составляет более 95 % массы всех живых организмов в биосфере.

Консументы - живые существа, не способные строить свое тело на базе использования неорганических веществ, требующие поступления органического вещества извне, в составе пищи, относятся к группе гетеротрофных: организмов, живущих за счет продуктов, синтезированных фото- или хемосинтетиками. Пища, извлекаемая тем или иным способом из внешней среды, используется гетеротрофами на построение собственного тела и как источник энергии для различных форм жизнедеятельности. Таким образом, гетеротрофы используют энергию, запасенную автотрофами в виде химических связей синтезированных ими органических веществ. В потоке веществ по ходу круговорота они занимают уровень потребителей[1], облигатно связанных с автотрофными организмами (консументы I порядка) или с другими гетеротро- фами, которыми они питаются (консументы II порядка; рис. 2.1).

Упрощенная схема переноса вещества (сплошная линия) и энергии (пунктирная линия) в процессе биологического круговорота (по В. Е. Соколову, И. А. Шилову, 1989)

Рис. 2.1. Упрощенная схема переноса вещества (сплошная линия) и энергии (пунктирная линия) в процессе биологического круговорота (по В. Е. Соколову, И. А. Шилову, 1989)

К консументам относится огромное количество живых организмов из разных таксонов. Их нет лишь среди цианобактерий и водорослей. Из высших растений к консументам относятся бесхлорофилльные формы, паразитирующие на других растениях; частично положение консументов занимают и растения со смешанным питанием (например, насекомоядные типа росянки). Все животные — консументы, и их роль в поддержании устойчивого биогенного круговорота очень велика.

Общее значение консументов в круговороте веществ своеобразно и неоднозначно. Они не обязательны в прямом процессе круговорота: искусственные замкнутые модельные системы, составленные из зеленых растений и почвенных микроорганизмов, при наличии влаги и минеральных солей могут существовать неопределенно долгое время за счет фотосинтеза, деструкции растительных остатков и вовлечения высвобожденных элементов в новый круговорот. Но это возможно лишь в стабильных лабораторных условиях. В природной обстановке возрастает вероятность гибели таких простых систем от многих причин. «Гарантами» устойчивости круговорота и оказываются в первую очередь консументы.

В процессе собственного метаболизма гетеротрофы разлагают полученные в составе пищи органические вещества и на этой основе строят вещества собственного тела. Трансформация первично продуцированных автотрофами веществ в организмах консументов ведет к увеличению разнообразия живого вещества. Разнообразие же — необходимое условие устойчивости любой кибернетической системы на фоне внешних и внутренних возмущений (принцип Эшби). Живые системы — от организма до биосферы в целом — функционируют по кибернетическому принципу обратных связей. В дальнейшем тексте мы не раз встретимся с важностью различных форм биологического разнообразия (биологической разнокачественности) для устойчивого функционирования экосистем[2].

Животные, составляющие основную часть организмов-консументов, отличаются подвижностью, способностью к активному перемещению в пространстве. Этим они эффективно участвуют в миграции живого вещества, дисперсии его по поверхности планеты, что, с одной стороны, стимулирует пространственное расселение жизни, а с другой — служит своеобразным «гарантийным механизмом» на случай уничтожения жизни в каком-либо месте в силу тех или иных причин.

Примером такой «пространственной гарантии» может служить широко известная катастрофа на о. Кракатау: в результате извержения вулкана в 1883 г. жизнь на острове была полностью уничтожена, но в течение всего 50 лет восстановилась — было зарегистрировано порядка 1200 видов. Заселение шло главным образом за счет не затронутых извержением Явы, Суматры и соседних островов, откуда разными путями растения и животные вновь заселили покрытый пеплом и застывшими потоками лавы остров. При этом первыми (уже через 3 года) на вулканическом туфе и пепле появились пленки цианобактерий. Процесс становления устойчивых сообществ на острове продолжается; лесные ценозы еще находятся на ранних стадиях сукцессии и сильно упрощены по структуре.

Наконец, чрезвычайно важна роль консументов, в первую очередь животных, как регуляторов интенсивности потоков вещества и энергии по трофическим цепям. Способность к активной авторегуляции биомассы и темпов ее изменения на уровне экосистем и популяций отдельных видов в конечном итоге реализуется в виде поддержания соответствия темпов создания и разрушения органического вещества в глобальных системах круговорота. Участвуют в такой регуляторной системе не только консументы, но последние (особенно животные) отличаются наиболее активной и быстрой реакцией на любые возмущения баланса биомассы смежных трофических уровней. Подробнее регуляторные механизмы в популяциях и экосистемах будут рассмотрены ниже.

В принципе система регулирования потоков вещества в биогенном круговороте, основанная на комплементарности составляющих эту систему экологических категорий живых организмов, работает по принципу безотходного производства. Однако в идеале этот принцип соблюден быть не может в силу большой сложности взаимодействующих процессов и влияющих на них факторов. Результатом нарушения полноты круговорота явились отложения нефти, каменного угля, торфа, сапропелей. Все эта вещества несут, в себе энергию, первоначально запасенную в процессе фотосинтеза. Использование их человеком — как бы «отставленное во времени» завершение циклов биологического круговорота.

Редуценты - к этой экологической категории относятся организмы- гетеротрофы, которые, используя в качестве пищи мертвое органическое вещество (трупы, фекалии, растительный опад и пр.), в процессе метаболизма разлагают его до неорганических составляющих.

Частично минерализация органических веществ идет у всех живых организмов. Так, в процессе дыхания выделяется С02, из организма выводятся вода, минеральные соли, аммиак и т. д. Истинными редуцентами, завершающими цикл разрушения органических веществ, следует поэтому считать лишь такие организмы, которые выделяют во внешнюю среду только неорганические вещества, готовые к вовлечению в новый цикл.

В категорию редуцентов входят многие виды бактерий и грибов. По характеру метаболизма это организмы-восстановители. Так, денитрифицирующие бактерии восстанавливают азот до элементарного состояния, сульфатредуцирующие бактерии — серу до сероводорода. Конечные продукты разложения органических веществ — диоксид углерода, вода, аммиак, минеральные соли. В анаэробных условиях разложение идет дальше — до водорода; образуются также углеводороды.

Полный цикл редукции органического вещества более сложен и вовлекает большее число участников. Он состоит из ряда последовательных звеньев, в череде которых разные организмы-разрушители поэтапно превращают органические вещества сначала в более простое формы и только после этого в неорганические составляющие действием бактерий и грибов.

В наземной среде основная часть процесса деструкции органических веществ идет в почве — еще один пример целостности биосферных процессов и функциональной связи разных сфер обитания жизни. Первичные стадии разложения проходят с участием животных, которые измельчают ткани пищевых объектов, в процессе пищеварения разлагают сложные молекулы белков, углеводов и других веществ на более простые, легко доступные для окончательной деструкции с помощью бактерий и грибов. Биомасса наиболее активных животных — участников разложения органики — достигает больших величин (табл. 2.1).

Количество бактерий, грибов, актиномицетов и простейших, с помощью которых постепенно завершается минерализация органического вещества, также крайне велико (табл. 2.2).

Численность наиболее обычных почвенных животных (экз/м2)

(По П. Дювиньо, М. Танг, 1968)

Таблица 2.1

Биотоп

Насекомые и их личинки

Дождевые

черви

Энхитре-

иды

Ногох-

востки

Клещи

Нематоды,

млн

Леса

3000

78

3500

40 000

80 000

6

Луга

4500

97

10 500

20 000

40 000

5

Посевы

1000

41

2000

10 000

10 000

1,5

Таблица 2.2

Численность микроорганизмов, млн/г сухой почвы (по И. М. Культиасову, 1982)

Организмы

Весна

Лето

Осень

Зима

Кленовый лес

Бактерии

58,40

40,50

23,50

55,10

Актиномицеты

4,80

2,80

2,20

2,70

Грибы

0,45

0,28

0,25

0,43

Дубовый лес

Бактерии

27,40

13,20

13,40

40,10

Актиномицеты

3,80

2,30

1,60

1,20

Грибы

0,43

0,29

0,49

0,65

Активная деятельность организмов-разрушителей приводит к тому, что годичный опад органических веществ полностью разлагается в тропических дождевых лесах в течение 1—2 лет, в лиственных лесах умеренной зоны — за 2—4 года, в хвойных лесах — за 4—5 лет. В тундре процесс разложения может длиться десятки лет. Интенсивность минерализации во многом зависит от температуры, влажности и других факторов.

  • [1] Консумент и означает потребитель (от лат. consumo — потреблять, съедать).
  • [2] Заметим, что и разделение живых организмов на продуцентов, консументови редуцентов — первый уровень биологической разнокачественности.
 
<<   СОДЕРЖАНИЕ ПОСМОТРЕТЬ ОРИГИНАЛ   >>