Полная версия

Главная arrow Экология arrow Биоценология

  • Увеличить шрифт
  • Уменьшить шрифт


<<   СОДЕРЖАНИЕ ПОСМОТРЕТЬ ОРИГИНАЛ   >>

Уровни организации живой материи.

Совместная деятельность продуцентов, консументов и редуцентов определяет непрерывное поддержание глобального биологического круговорота веществ в биосфере Земли. Этот процесс поддерживается закономерными взаимоотношениями составляющих биосферу пространственно-функциональных частей и обеспечивается особой системой связей, выступающих как механизм гомеостазирования биосферы — поддержания ее устойчивого функционирования на фоне изменчивых внешних и внутренних факторов. Поэтому биосферу можно рассматривать как глобальную экологическую систему, обеспечивающую устойчивое поддержание жизни в ее планетарном проявлении.

Любая биологическая (в том числе и экологическая) система характеризуется специфической функцией, упорядоченными взаимоотношениями составляющих систему частей (субсистем) и основывающимися на этих взаимодействиях регуляторными механизмами, определяющими целостность и устойчивость системы на фоне колеблющихся внешних условий. Из сказанного выше ясно, что биосфера в ее структуре и функции соответствует понятию биологической (экологической) системы.

На уровне биосферы как целого осуществляется всеобщая функциональная связь живого вещества с неживой природой. Ее структурнофункциональными составляющими (подсистемами), на уровне которых осуществляются конкретные циклы биологического круговорота, являются биогеоценозы (экосистемы).

Биогеоценоз (биоценоз) - это сообщество разных видов микроорганизмов, растений и животных, заселяющее определенные места обитания и устойчиво поддерживающее биогенный круговорот веществ. Поддержание круговорота в конкретных географических условиях — основная функция биогеоценоза. Она основана на пищевых взаимоотношениях видов, формирующих упорядоченную трофическую структуру биогеоценоза. В состав биогеоценоза с необходимостью входят представители трех принципиальных эколого-функциональных групп живых организмов — продуцентов, консументов и редуцентов.

В конкретных биоценозах эти три группы организмов представлены популяциями многих видов, состав которых специфичен для каждого конкретного сообщества. Функционально же все виды образуют несколько трофических уровней: продуцентов, консументов I порядка, консументов II порядка, ..., редуцентов. Взаимоотношения между видами разных уровней образуют систему трофических цепей, лежащую в основе общей трофической структуры биоценоза.

Обмен веществ строго видоспецифичен. Поэтому разнообразие видов в составе каждого трофического уровня, а следовательно, и в составе экосистемы в целом имеет большое биологическое значение. Во-первых, этим обеспечивается максимальная эффективность использования источников и форм энергии для синтеза первичной продукции и трансформации вещества на разных этапах биогенного круговорота, вплоть до полной минерализации и повторного вовлечения в цикл (рис. 2.1). Во-вторых, многообразие однозначных по функции в биогеоценозе видов выступает как мощный механизм устойчивости потоков вещества и энергии по пищевым цепям: в случае выпадения отдельных видов их место в преобразовании вещества и энергии может быть замещено «аналогами» из того же трофического уровня (рис. 2.2).

Таким образом, на уровне биогеоценозов биологическое разнообразие реализуется через расширение набора видов, что ведет к повышению устойчивости и эффективности функционирования биоценотиче- ских систем. Значение биоразнообразия настолько велико, что проблема обсуждается уже на международном уровне в виде обширной программы, курируемой Международным союзом биологических наук (IUBS).

Puc. 2.2. Функциональное замещение видов в составе биогеоценоза:

А — исходная структура трофических цепей; Б — структура после выпадения

одного из видов

Обладая специфической функцией, структурой и комплексом механизмов адаптации (гомеостазирования), биогеоценоз, будучи составной частью (субсистемой) в составе биосферы, в то же время представляет собой самостоятельную экологическую систему более низкого уровня. Иными словами, биогеоценоз есть система взаимодействующих популяций многих видов продуцентов, консументов и редуцентов (биоценоз), функционирующая в определенной среде (биотоп) и устойчиво осуществляющая биогенный круговорот веществ (рис. 2.3).

Соотношение биологических систем разного уровня в составе биосферы (по В. Е. Соколову, И. А. Шилову, 1989)

Рис. 2.3. Соотношение биологических систем разного уровня в составе биосферы (по В. Е. Соколову, И. А. Шилову, 1989).

На уровне организма осуществляется обмен веществ с окружающей средой, на уровне популяции обеспечивается устойчивое воспроизведение вида и его участие в биогенном круговороте, на уровне биогеоценоза поддерживается устойчивый круговорот веществ, на уровне биосферы — глобальный круговорот

Форма существования жизни — вид. С позиций геохимической роли вида его наиболее существенным свойством является специфичность обмена веществ с внешней средой. Устойчивое участие видов в биогенном круговороте веществ в составе биогеоценозов осуществляется на уровне популяций.

Популяции - это естественные группировки особей одного вида, заселяющих общие, места обитания и связанных общностью генофонда и закономерными функциональными взаимодействиями. В современной экологии популяцию рассматривают как биологическую систему надорганизменного уровня (рис. 2.3), характеризующуюся специфическими функциями и структурой (В. Н. Беклемишев, 1960; Н. П. Наумов, 1963; С. С. Шварц, 1964, 1980; И. А. Шилов, 1977, 1985; Т. А. Работнов, 1978, и др.).

Функция популяции как системы неоднозначна. С одной стороны, популяция есть форма существования вида в конкретных условиях. В этом плане основная ее функция — сохранение (выживание) и воспроизведение вида в данных условиях. Эта функция обеспечивается общей направленностью индивидуальных адаптаций составляющих популяцию особей (отсюда общность их морфобиологического типа) и формированием закономерных взаимоотношений, на основе которых поддерживается и регулируется размножение. В результате при непрерывной смене составляющих ее индивидов популяция как целостная структурная единица практически бессмертна.

С другой стороны, популяция каждого вида входит в состав биогеоценоза как одна из его функциональных единиц (субсистем). Био- ценотическая функция популяции — участие в биологическом круговороте — определяется видоспецифическим типом обмена веществ. Популяция представляет собой вид в составе экосистемы; все межвидовые взаимоотношения в биогеоценозах осуществляются на популяционном уровне. Устойчивая реализация биогеоценотической функции определяется специфическими механизмами популяционной авторегуляции, эффект которых выражается в самоподдержании популяции как системы в условиях сложной и изменчивой среды.

Таким образом, популяции обладают всеми качествами самостоятельных биологических систем. У большинства видов они пространственно структурированы, что определяет эффективное использование ресурсов среды и обеспечивает бесперебойные внутрипопуляционные взаимоотношения, составляющие сущность функционирования популяции как целого.

Особи в популяции при всем сходстве (видовой морфофизиологический тип) неравноценны по участию в общепопуляционных функциях; возможности проявления свойственных виду форм жизнедеятельности у особей в составе популяции в известной мере ограничены системой внутрипопуляционных отношений. Иными словами, популяция структурирована не только пространственно, но и функционально.

Особи в популяциях постоянно обмениваются информацией[1], что представляет собой специфический механизм взаимодействия живых организмов. Популяциям свойственны авторегуляторные механизмы, функционирующие на базе генетической, а у высших животных — и поведенческой разнокачественности составляющих их особей.

Отличительная особенность популяционных систем состоит в том, что все формы взаимодействия со средой и осуществления общепопуляционных функций опосредуются через физиологические реакции отдельных особей. Это возможно лишь при закономерных формах интеграции деятельности отдельных организмов: физиологические реакции осуществляются отдельными индивидами, однако направленность их такова, что конечный эффект реализуется на уровне популяции как целого; при этом он может быть инадаптивным для отдельных особей. Иными словами, физиология отдельных организмов в составе популяции как бы решает двойную задачу: физиологические процессы обеспечивают, с одной стороны, жизнь и адаптацию самой особи, а с другой — устойчивое поддержание функций целостной популяции.

Итак, структурированность, интегрированность составных частей (целостность), авторегуляция и способность к адаптивным реакциям — основные черты, свойственные популяции как биологической системе надорганизменного уровня.

Организм - отдельный организм (особь) входит в состав популяции как структурно-функциональная подсистема, занимающая определенное положение в популяционных взаимосвязях и выполняющая соответствующие этому положению функции в общепопуляционных процессах. Только организм представляет собой конкретную единицу обмена веществ, и в этой функции он выступает как самостоятельная биологическая система, находящаяся в тесных взаимосвязях с внешними условиями и с более крупными биологическими системами.

Строго говоря, именно организм и был первым биологическим объектом, который рассматривался и как система функционально интегрированных морфологически обособленных частей. Эта мысль высказывалась известным физиологом Клодом Бернаром еще в конце XIX в. К. Бернар считал стабильность физико-химических условий во внутренней среде основой свободы и независимости живых организмов в изменчивых условиях среды.

Не менее известный ученый У. Кеннон в 1929 г. ввел термин, гомеостаз (от греч. homoios — одинаковый), означающий способность организма как целого поддерживать постоянство внутренней среды. Позднее идея целостного организма эффективно разработана акад. П. К. Анохиным в его концепции функциональных физиологических систем (1949).

Функция обмена веществ в организме определяется согласованной деятельностью различных систем органов; регуляция метаболических процессов лежит в основе адаптации жизнедеятельности организма к изменчивым условиям среды. Устойчивость обменной функции в глобальном масштабе определена способностью живых организмов к самовоспроизведению — уникальной функцией живого вещества.

  • [1] Это относится не только к животным, как может показаться: «пассивная» информация через выделяемые в среду метаболиты столь же характерна для растений и микроорганизмов.
 
<<   СОДЕРЖАНИЕ ПОСМОТРЕТЬ ОРИГИНАЛ   >>