Полная версия

Главная arrow Экология arrow Биоценология

  • Увеличить шрифт
  • Уменьшить шрифт


<<   СОДЕРЖАНИЕ ПОСМОТРЕТЬ ОРИГИНАЛ   >>

Энергетическое обеспечение биологического круговорота

Нее преобразования веществ в процессе круговорота требуют затрат энергии. Ни один живой организм не продуцирует энергию — она может быть получена только извне. В современной биосфере главнейший источник энергии, утилизируемой в биогенном круговороте, — это энергия солнечного излучения. Соответственно первый этап использования и преобразования энергии в цепях круговорота — фотосинтез, в процессе которого создаются вещества для построения тела растительного организма. Энергия, полученная в виде солнечной радиации (ФАР), в процессе фотосинтеза преобразуется в энергию химических связей. Процесс аккумуляции энергии в организме фотосинтетиков сопряжен с увеличением массы организма. Массу веществ, созданных продуцентом-фотосинтетиком, обозначают как первичную продукцию, это биомасса растительных тканей.

Поскольку ни один механизм не работает со 100 %-ным коэффициентом полезного действия, не вся полученная продуцентами энергия накапливается в виде первичной продукции; часть ее рассеивается в форме тепла. В свою очередь, часть энергии, накопленной в биомассе, расходуется на процессы жизнедеятельности; это ведет к уменьшению биомассы. Эти потери принято называть потерями на дыхание. В результате в виде накопленной биомассы (чистая первичная продукция) аккумулируется лишь относительно небольшая часть полученной организмом продуцента солнечной энергии.

По приблизительным расчетам, если энергию солнечного излучения принять за 100 %, то лишь 15 % ее достигает поверхности Земли и только 1 % связывается в виде органического вещества растительности (74 % составляет тепло и 10 % — отраженная энергия). Из суммы связанной в процессе продукции энергии около половины расходуется на жизненные процессы (потери на дыхание). Оставшиеся 50 % аккумулированной энергии составляет рост биомассы. Таким образом, чистая продукция соответствует примерно 0,5 % солнечной энергии, падающей на Землю. По некоторым другим расчетам, эффективность фотосинтеза оказывается еще ниже — порядка 0,1 %.

Накопленная в результате фотосинтеза биомасса растений (первичная продукция) — это резерв, из которого часть используется в качестве пищи организмами-гетеротрофами (консументами I порядка). По тем же приблизительным расчетам, в пищу фитофагам изымается около 40 % фитомассы; оставшиеся 60 % означают сальную массу растительности в экосистеме.

Примерно в той же последовательности идет дальнейшее использование энергии организмами-гетеротрофами. Полученная с пищей энергия (так называемая большая энергия) соответствует энергетической стоимости общего количества съеденной пищи. Однако эффективность усвоения пищи никогда не достигает 100 % и зависит от состава корма, температуры, сезона и ряда других факторов. Так, у мелких грызунов перевариваемость концентрированных кормов составляет 8А—94 %, а в комплексе с зелеными кормами — 81—85 %. У тетеревов перевариваемость почек бука составляет всего 8 %, а плодов рябины — 46,4 % (при этом содержащиеся в плодах сахара усваиваются на 80 % и более). У питающихся водорослями рыб Puntius sophore усваивается примерно 30 % энергии, содержащейся в пище; из этого количества лишь 6 % вдет на рост, а остальная энергия расходуется на поддерживающий обмен.

Усвоенная энергия, за вычетом энергии, содержащейся в выведенных из организма экскретах (фекалии, моча и др.), составляет метаболизи- рованную энергию. Часть ее выделяется в виде тепла в процессе переваривания пищи и либо рассеивается, либо используется на терморегуляцию. Оставшаяся энергия подразделяется на энергию существования. которая немедленно расходуется на различные формы жизнедеятельности (по существу, это тоже «расход на дыхание»), и продуктивную энергию, которая аккумулируется (хотя бы временно) в виде массы нарастающих тканей, энергетических резервов, половых продуктов (рис. 3.1).

Энергия существования складывается из затрат на фундаментальные жизненные процессы (основной обмен, или базальный метаболизм) и энергии, расходуемой на различные формы деятельности. У гомойо- термных животных к этому добавляются расходы энергии на терморегуляцию. Все эти энергозатраты заканчиваются рассеиванием энергии в виде тепла — опять-таки в силу того, что ни одна функция не работает с КПД, равным 100 %. Энергия, накопленная в тканях тела гетеротрофа, составляет вторичную продукцию экосистемы, которая может быть использована в пищу консументами высших порядков.

Схема потока энергии в организме птиц (по В. Р. Дольнику, 1982)

Рис. 3.1. Схема потока энергии в организме птиц (по В. Р. Дольнику, 1982)

Подобным образом энергия расходуется на всех гетеротрофных этапах круговорота, т. е. в организмах, последовательно использующих в пищу биомассу предыдущих трофических уровней (рис. 3.2). В результате количество энергии, доступной для потребления, прогрессивно падает по ходу повышения трофических уровней, что лежит в основе относительно небольшой длины пищевых цепей.

В цепях разложения постепенная деструкция органических веществ связана с высвобождением энергии, которая частично рассеивается, а частично аккумулируется в составе тканей организмов-редуцентов. После гибели их тела также попадают в цикл редукции.

Схема потока энергии по различным трофическим уровням экосистемы (по И. Л. Шилову, 1987)

Рис. 3.2. Схема потока энергии по различным трофическим уровням экосистемы (по И. Л. Шилову, 1987)

Таким образом, на фоне биологического круговорота веществ потоки энергии однонаправленны: первично аккумулированная в тканях продуцентов энергия постепенно рассеивается в виде тепла на всех этапах трофических цепей. Однако на всех этапах идет и синтез вещества, а вместе с тем аккумуляция энергии в химических связях. Живые организмы в определенной степени препятствуют немедленному рассеиванию энергии, замедляют этот процесс, действуя против второго закона термодинамики.

 
<<   СОДЕРЖАНИЕ ПОСМОТРЕТЬ ОРИГИНАЛ   >>