Классификация шкал измерений

Все виды шкал измерений обычно разделяются на следующие типы: шкалы наименований; шкалы порядка; шкалы интервалов (разностей); шкалы отношений; абсолютные шкалы; условные шкалы. Шкалы интервалов и отношений относят к метрическим шкалам, сюда же относят абсолютные шкалы как подтип шкал отношений (рис. 4.2).

Шкалы наименований характеризуются оценкой (отношением) эквивалентности качественных проявлений свойства или отличиями проявления этого свойства.

Множество проявлений качественного параметра свойства может быть упорядочено по признаку близости (сходства) качественных различий и (или) по признаку количественных различий в некоторых показателях этих свойств. Например, шкалы измерений цвета опираются на трехкоординатную модель цветового пространства, упорядоченную

Классификация шкал измерений

Рис. 4.2. Классификация шкал измерений

по цветовым различиям (качественный параметр) и яркости (количественный параметр).

Отличительными признаками шкал наименований являются: неприменимость в них понятий нуля, единицы измерений, размерности, в них отсутствует отношения сопоставления тина "больше – меньше".

В них допустимы только изоморфные и гомоморфные преобразования. В шкалах не допускается изменение спецификаций, которые описывают конкретные шкалы. Чаще всего наименования устанавливаются рядом "классов эквивалентностей". Примерами этого могут служить шкалы измерений цвета, геодезические шкалы для обозначения местоположения на Земле в установленных системах координат; шкалы запахов; шкалы групп крови человека с учетом резус-фактора и пр.

Например, шкала цветов может быть представлена в виде атласов цветов. При этом процесс измерений заключается в достижении (например, при визуальной оценке) эквивалентности испытуемого образца с одним из этатонных образцов, входящих в атлас цветов.

Шкалы порядка описывают свойства величин, упорядоченные по возрастанию или убыванию оцениваемого свойства.

Отличительными особенностями шкал порядка является отсутствие единицы измерений и размерности; необязательность наличия нуля; допустимость любых монотонных преобразований; недопустимость изменения спецификаций, описывающих конкретные шкалы.

Примерами шкал порядка могут быть шкалы:

  • • твердости материалов: металлов (международные шкалы Бринелля, Роквела, Виккерса, Шора), минералов, резины, пластмасс и др.;
  • • интенсивности и балльности землетрясений;
  • • силы ветра и состояния поверхности моря (шкала Бофорта);
  • • белизны различных объектов (бумаги, древесины, муки и пр.);
  • • чисел светочувствительности фотоматериалов;
  • • громкостей и уровней громкости;
  • • интенсивности вкуса и запаха воды;
  • • октановых и цетановых чисел топлива для двигателей;
  • • чисел падения для зерна и муки;
  • • оценки событий на атомных электростанциях;
  • • кислотных, йодных, бромных, перманганатных, медных, хлорных, перекисных и др. чисел для различных материалов и продуктов.

Условные шкалы – это шкалы величин, в которых не определена единица измерения. К ним относятся шкалы наименований и порядка.

Подобное расширение применения шкал измерений выходит за рамки обычного понимания метрологии в смысле ориентированности на измерение физических величин.

Остановимся на содержании ряда важных условных шкал, в частности шкал твердости (шкал чисел твердости). Твердость оценивается по условным шкалам Бринелля (НВ), Виккерса (HV), Роквелла (HR) и др.

По условной шкале Бринелля твердость (число твердости) измеряют, вдавливая стальной закаленный шарик (диаметром 10 мм, 5 мм, 2,5 мм) в испытуемый образец, с помощью отношения усилия (нагрузки) F на шарик к площади S отпечатка, остающегося на образце,

(4.4)

где О – диаметр шарика, мм; d – диаметр отпечатка, мм; F – нагрузка на шарик, Н или кгс (1 кгс ≈ 9,8 Н).

По условной шкале Виккерса число твердости определяют, вдавливая в испытуемый образец алмазный наконечник, имеющий форму четырехгранной пирамиды (с углом при вершине 136°), с приложением усилия Fot 49 Н (5 кгс) до 980 Н (100 кгс) в течение времени выдержки, например, 10 с, 15 с, 20 с.

После приложения усилия с помощью микроскопа измеряется длина диагоналей на отпечатке d1, d2. Число твердости по Виккерсу определяется по формуле

Условной единицей, как в шкалах твердости по Бри- неллю и Виккерсу, является число твердости по Роквеллу. При измерении твердости по Роквеллу стандартный наконечник (стальной шарик или алмазный конус) вдавливается с помощью прессов Роквелла в испытуемый образец под действием двух усилий: предварительного F0 и общего F, причем F = F0 + F1.

Пресс Роквелла имеет три шкалы (А, В, С). Измерение твердости по шкалам А и С производится путем вдавливания в образец алмазного наконечника (конус с углом 120°). При измерении по шкале Л усилие F0 = 98 Н (10 кгс), F1 = = 490 Н (50 кгс), а общее усилие F = 588 Н.

При измерении по шкале С усилие F0 = 98 Н, F1 = 1372 Н (140 кгс), F = 1470 Н (150 кгс).

Для сравнительно мягких материалов используется шкала В. При этом используется стальной шарик диаметром 1,588 мм под действием нагрузок F0 = 98 H, F1 = 882 H (90 кгс), F = 980 Н (100 кгс).

Твердость по Роквеллу обозначают в зависимости от применяемой шкалы HRA, HRB, HRC с указанием числа твердости, которое определяется в случае шкал A и С по формуле

(4.5)

где

HR = 100 – (hh0) / 0,002, (4.6)

а в случае шкалы В

HRB = 130 – (hh0) / 0,002 (4.7)

где h0 – глубина внедрения наконечника в образец под действием предварительного усилия, h – глубина внедрения наконечника в образец под действием общего усилия, измеренного после снятия нагрузки F1, с оставлением предварительной нагрузки.

В России имеется специальный эталон воспроизведения твердости по шкале HRC и HRCЭ (шкала Супер-Роквелла). Для пересчета шкал HRC и HRCЭ существуют официальные таблицы.

В настоящее время требования к твердости рекомендуется указывать числами по шкале HRCЭ.

В ряде случаев применяется число твердости по Моосу, определяемое по 10-балльной шкале, применяемой для изучения твердости минералов. При этом более твердому минералу приписывается более высокий балл.

Так, если тальк имеет число твердости (балл), равный единице, гипс – двум, то кварцу соответствует число твердости, равное семи, топазу – восьми, корунду – девяти, алмазу – 10.

Шкала Мооса, "старейшая" из шкал твердости, была предложена в 1822 г.

Позже для минералов стала применяться 12-балльная шкала Брейтгаупта. Балл 1 по-прежнему приписывается тальку, но алмаз имеет 12-й балл. Таким образом, между этими шкалами нет принципиального различия.

Для определения твердости растягивающихся тел применяется число твердости по Шору, связанное с числом твердости по Бри неллю.

При этом НВ соответствует 7 НШ, где НШ – число делений шкалы Шора, которое находится по высоте, на которую отскакивает боек при испытаниях.

Для определения твердости резины применяется шкала Шора и международный стандарт, по которому твердость резины рассчитывается по глубине погружения индикатора в испытуемый образец.

Шкалы разностей (интервалов) отличаются от шкал порядка тем, что для описываемых ими свойств имеют смысл не только соотношения эквивалентности и порядка, но и равенства и суммирования интервалов (разностей) между различными количественными проявлениями свойств. Например, шкала интервалов времени, в которой интервалы времени (период работы, учебы) можно складывать и вычитать, но складывать даты каких-либо событий бессмысленно. Другим примером может служить шкала длин (расстояний), оцениваемая путем совмещения нуля линейки с одной точкой через пространственный интервал до другой точки, у которой и выполняют отсчет. К шкалам этого типа относятся практические шкалы температур с условным нулем.

Шкалы разностей имеют условные (принятые по соглашению) единицы измерений и условные нули, основанные на каких-либо реперах. В этих шкалах допустимы линейные преобразования, в них применимы процедуры математического ожидания, стандартного отклонения и пр.

К шкалам разностей относят:

  • 1) Международную шкалу равномерного атомного времени ТА, в которой размер единицы соответствует определению секунды в СИ;
  • 2) шкалу всемирного времени UT0, длительность секунды в которой равна средней солнечной секунде;
  • 3) шкалу всемирного времени UT1, отличающуюся от UT0 поправкой на перемещение полюсов Земли;
  • 4) шкалу всемирного времени UT2, отличающуюся от UT1 поправкой на сезонную неравномерность вращения Земли;
  • 5) шкалу координированного времени UTC, в которой размер секунды такой же, как в ТА, но начало счета может меняться ровно на 1 с, чтобы расхождения между UTC и UT2 не превышало 0,9 с;
  • 6) календари (григорианский, юлианский, мусульманский, лунный и др.);
  • 7) шкалу температуры по Цельсию, в которой единица измерений – градус Цельсия – равна Кельвину и за условный нуль принята термодинамическая температура 273,16 К;
  • 8) шкалу окислительных потенциалов водных растворов.

Шкалы отношений описывают свойства величин, для множеств количественных проявлений которых применимы логические отношения эквивалентности, порядка и пропорциональности, а для некоторых шкал также отношение суммирования.

В шкалах отношения существует естественный нуль и по согласованию устанавливается единица измерения.

Примерами шкалы отношений являются:

  • 1) шкала массы (аддитивная);
  • 2) шкала частот, в которой размер единицы соответствует определению герца в СИ;
  • 3) шкала термодинамической температуры (пропорциональная), в которой размер единицы соответствует определению кельвина в СИ. К этой шкале максимально приближена международная температурная шкала МТШ-90, которая опирается на ряд реперных точек;
  • 4) шкала силы света оптического излучения, в которой размер единицы соответствует определению канделы в СИ с использованием для различных по спектру излучений стандартизированной Международной комиссией по излучению (МКО) эмпирической функции относительной спектральной световой эффективности монохроматического излучения для дневного зрения. Эта шкала является исходной для шкал всех световых величин;
  • 5) шкалы уровня звука А, В, С и D, стандартизированные на международном уровне. Уровень звукового давления в этих шкалах принято выражать в логарифмических шкалах (в децибелах относительно опорного значения 2 × 10-5 Па);
  • 6) шкалы измерения раздражающего действия шума (шумности и уровня воспринимаемого шума), стандартизированные на международном уровне;
  • 7) аудиометрические шкалы (для измерения остроты и степени потери слуха);
  • 8) псофометрические шкалы (для измерения действия шумов в линиях связи);
  • 9) шкалы доз (поглощенной и эквивалентной) и мощности доз ионизирующих излучений;
  • 10) шкала водородного показателя pH водных растворов (десятичного логарифма активности ионов водорода в грамм-молях на литр, взятого с обратным знаком, реализуемая с использованием ряда реперных растворов);
  • 11) Международная сахарная шкала, установленная рекомендацией Международной организацией законодательной метрологии;
  • 12) шкала жесткости воды.

Абсолютная шкала – это шкала отношений (пропорциональная или аддитивная) безразмерной величины.

Отличительным признаком абсолютных шкал является наличие естественных нуля и арифметической единицы измерений, которые нс зависят от принятой системы единиц; допустимость только тождественных преобразований; допустимость изменения спецификаций, описывающих конкретные шкалы.

Результаты измерений в абсолютных шкалах могут быть выражены не только в арифметических единицах, но и в процентах, промилле, битах, байтах, децибелах. Единицы абсолютных шкал могут быть применены в сочетании с единицами размерных величин. В частности, скорость передачи информации может быть выражена в битах в секунду.

Разновидностью абсолютных шкал являются дискретные (счетные) шкалы, в которых результат измерения выражается числом частиц, квантов или других объектов, эквивалентных по проявлению измеряемого свойства. Например, шкалы для электрического заряда ядер атомов, числа квантов (в фотохимии), количества информации. Иногда за единицу измерений в таких шкалах принимают какое-то определенное число частиц (квантов). Так, один моль – это число частиц, равное числу Авогадро.

 
< Пред   СОДЕРЖАНИЕ     След >