Полная версия

Главная arrow Экономика arrow Исследование операций в экономике

  • Увеличить шрифт
  • Уменьшить шрифт


<<   СОДЕРЖАНИЕ   >>

11.5. Задача о замене оборудования

Замена оборудования – важная экономическая проблема. Задача состоит в определении оптимальных сроков замены старого оборудования (станков, производственных зданий и т.п.). Старение оборудования включает его физический и моральный износ, в результате чего растут производственные затраты, затраты на ремонт и обслуживание, снижаются производительность труда, ликвидная стоимость. Критерием оптимальности являются, как правило, либо прибыль от эксплуатации оборудования (задача максимизации), либо суммарные затраты на эксплуатацию в течение планируемого периода (задача минимизации).

При построении модели задачи принято считать, что решение о замене выносится в начале каждого промежутка эксплуатации (например, в начале года) и что в принципе оборудование можно использовать неограниченно долго.

Основная характеристика оборудования – параметр состояния – его возраст t.

При составлении динамической модели замены процесс замены рассматривают как "-шаговый, разбивая весь период эксплуатации на п шагов. Возможное управление на каждом шаге характеризуется качественными признаками, например Xе (сохранить оборудование), X' (заменить) и Хр (сделать ремонт).

Рассмотрим конкретный пример.

11.3. Оборудование эксплуатируется в течение 5 лет, после этого продается. В начале каждого года можно принять решение – сохранить оборудование или заменить его новым. Стоимость нового оборудования р0 = 4000 руб[1]. После t лет эксплуатации (1 < t < 5) оборудование можно продать за g(t ) = р0 T' руб. (ликвидная стоимость). Затраты на содержание в течение года зависят от возраста t оборудования и равны r(i) = 600(i + l). Определить оптимальную стратегию эксплуатации оборудования, чтобы суммарные затраты с учетом начальной покупки и заключительной продажи были минимальны.

Решение. Способ деления управления на шаги, естественный, по годам, п = 5. Параметр состояния – возраст машины – sk_t =t, sQ= 0 – машина новая в начале 1-го года эксплуатации. Управление на каждом шаге зависит от двух переменных Xе и Х

Уравнения состояний зависят от управления:

(11.22)

В самом деле, если к /г-му шагу sk_{ =t, то при сохранении машины к = Xе) через год возраст машины увеличится на 1. Если машина заменяется новой к = Х'), то это означает, что к началу ⅞-ro шага ее возраст t = 0, а после года эксплуатации ¢=1, т.е. sk = 1.

Показатель эффективности ⅛-го шага:

(11.23)

При Xе затраты только на эксплуатацию машины возраста i, при X1 машина продается (-4000-2"' J, покупается новая (4000) и эксплуатируется в течение первого года (600), общие затраты равны (-4000 ∙ 2"' + 4000 + 600).

Пусть– условные оптимальные затраты на экс

плуатацию машины начиная с А-го шага до конца при условии, что к началу А-го шага машина имеет возраст t лет. Запишем для функцийуравнения Веллмана (11.5) и (11.8), заменив задачу максимизации на задачу минимизации:

(11.24)

Величина– стоимость машины возраста

t лет (по условию машина после 5 лет эксплуатации продается).

(11.25)

Из определения функцийследует

Дадим геометрическое решение этой задачи. Па оси абсцисс будем откладывать номер шага А, на оси ординат – возраст t машины. Точка (А – 1, ί) на плоскости соответствует началу А-го года эксплуатации машины возраста t лет. Перемещение па графике в зависимости от принятого управления на А-м шаге показано на рис. 11.7.

Состояние начала эксплуатации машины соответствует точке , конец – точкам s(6; t). Любая траектория, переводящая точкуизв, состоит из отрезков-шагов, соответствующих годам эксплуатации. Надо выбрать такую траекторию, при которой затраты на эксплуатацию машины окажутся минимальными.

Рис. 11.7

Над каждым отрезком, соединяющим точки -1; /) и [к, ¢ + 1), запишем соответствующие управлению Xе затраты, найденные из (11.23): 600(ί + ΐ), а над отрезком, соединяющим точки (k-; ¢) и [к; г), запишем затраты, соответствующие управлению X3, т.е. 4600-4000 •2_ί. Таким образом мы разметим все отрезки, соединяющие точки на графике, соответствующие переходам из любого состояния sk_i в состояние sk (рис. 11.8). Например, над отрезками, соединяющими точки (к; 2) и (/г+1; 3), стоит число 1800[2], что соответствует затратам на эксплуатацию в течение каждого года машины возраста t = 2 года, а над отрезками, соединяющими (к, 2) и (£+1; 1), стоит число 3600 – это сумма затрат на покупку машины и эксплуатацию новой машины в течение года без "затрат" (выручки) за проданную машину возраста t лет. Следует учесть, что 0 < t < к.

Проведем на размеченном графе состояний (см. рис. 11.8) условную оптимизацию.

V шаг. Начальные состояния – точки (4; ¢), конечные – (5; ¢). В состояниях (5; ¢) машина продается, условный оптимальный доход от продажи равен 4000 •2_ί, но поскольку целевая функция связана с затратами, то в кружках точек (5; ¢) поставим величину дохода со знаком минус.

Анализируем, как можно попасть из каждого начального состояния в конечное на V шаге.

Состояние (4; 1). Из него можно попасть в состояние (5; 2), затратив на эксплуатацию машины 1200 и выручив затем от продажи 1000, т.е. суммарные затраты равны 200, и в состояние (5; 1) с затратами 2600 – 2000 = 600. Значит, если к последнему шагу система находилась в точке (4; 1), то следует идти в точку (5; 2) (укажем это направление двойной стрелкой), а неизбежные минимальные затраты, соответствующие этому переходу, равны 200 (поместим эту величину Zg (1) = 200 в кружке точки (4; 1)).

Состояние (4; 2). Из него можно попасть в точку (5; 3) с затратами 1800 – 500 = 1300 и в точку (5; 1) с затратами 3600 – 2000 = 1600. Выбираем первое управление, отмечаем его двойной стрелкой, a Zg(2) = 1300 проставляем в кружке точки (4; 2).

Рассуждая таким же образом для каждой точки предпоследнею шага, мы найдем для любого исхода IV шага оптимальное управление на V шаге, отметим его на рис. 11.8 двойной

Рис. 11.8

стрелкой. Далее планируем IV шаг, анализируя каждое состояние, в котором может оказаться система в конце III шага с учетом оптимального продолжения до конца процесса, т.е. решаем для всех 0 < t < 4 при k = 4 уравнения (11.22). Например, если начало IV шага соответствует состоянию (3; 1), то при управлении Xе система переходит в точку (4; 2), затраты на этом шаге 1200, а суммарные затраты за два последних шага равны 1200 + 1300 = 2500. При управлении X' затраты за два шага равны 2600 + 200 = 2800. Выбираем минимальные затраты 2500, ставим их в кружок точки (3; 1) а соответствующие управления на этом шаге помечаем двойной стрелкой, ведущей из состояния (3; 1), в состояние (4; 2). Так поступаем для каждого состояния (3; t) (см. рис. 11.8).

Продолжая условную оптимизацию III, II и I шагов, мы получим на рис. 11.8 такую ситуацию: из каждой точки (состояния) выходит стрелка, указывающая, куда следует перемещаться в данном шаге, если система оказалась в этой точке, а в кружках записаны минимальные затраты на переход из этой точки в конечное состояние. На каждом шаге графически решались уравнения (11.22).

После проведения условной оптимизации получим в точке (0; 0) минимальные затраты на эксплуатацию машины в течение 5 лет с последующей продажей: Zmin =11900. Далее строим оптимальную траекторию, перемещаясь из точки s0(0; 0) по двойным стрелкам в.?. Получаем набор точек:

{(0; 0),(1;1), (2; 2),(3:1), (4; 2), (5; 3)},

который соответствует оптимальному управлению Х*(ХС, Xе, Х Xе, Xе). Оптимальный режим эксплуатации состоит в том, чтобы заменить машину новой в начале 3-го года. ►

Таким образом, размеченный график (сеть) позволяет наглядно интерпретировать расчетную схему и решить задачу методом ДП.

Как уже отмечалось, модели и вычислительная схема ДП очень гибки в смысле возможностей включения в модель различных модификаций задачи. Например, аналогичная задача может быть рассмотрена для большого числа вариантов управления, "ремонт", "капитальный ремонт" и т.д. Можно рассматривать замену оборудования новым с учетом технического прогресса, можно учесть изменения в затратах на эксплуатацию оборудования после его ремонта, в зависимости от года эксплуатации (дороже, дешевле). Все эти факторы можно учитывать вычислительной схемой ДП.

  • [1] Все цены условные.
  • [2] Напоминаем, что псе затраты выражены в условных рублях.
 
<<   СОДЕРЖАНИЕ   >>