Полная версия

Главная arrow Товароведение arrow Физическая и коллоидная химия

  • Увеличить шрифт
  • Уменьшить шрифт


<<   СОДЕРЖАНИЕ   >>

Химические источники тока

Любой гальванический элемент может быть источником постоянного тока. Но лишь немногие из них удовлетворяют техническим требованиям, делающим возможным их использование.

В основе некоторых современных сухих батарей, питающих слуховые аппараты, карманные фонари, переносную аппаратуру связи, лежит схема элемента Лекланше, предложенная в 1876 г.:

Удобство такого портативного источника тока заключается в том, все его составные части представляют собой твердые или пастообразные вещества, упаковка которых предотвращает их попадание на окружающие предметы. Анодом сухого элемента служит его цинковая оболочка, а катодом — графитовый стержень, спрессованный в слой оксида марганца (IV) и углерода. В качестве электролита используется наста из хлорида цинка, хлорида амония и воды. На электродах сухого элемента протекают следующие полуреакции.

На аноде:

На катоде:

Суммарная реакция описывается уравнением

Напряжение такого элемента — 1,5 В. Сухие элементы представляют собой первичные химические источники тока (или гальванический элемент одноразового действия). После разрядки сухой элемент использовать нельзя и его приходится выбрасывать.

Вторичным источником тока являются аккумуляторы. Работоспособность разряженного аккумулятора можно восстановить, зарядив его, т.у. пропустив через него в обратном направлении ток от внешнего источника (электролиз). При зарядке аккумулятор работает как электролизер, а при разрядке — как гальванический элемент. Процессы заряда аккумуляторов осуществляются многократно. В табл. 13.1 приведены характеристики наиболее распространенных гальванических элементов.

Наиболее распространенным является свинцовый (кислотный) аккумулятор. Свинцовый аккумулятор представляет собой систему свинцовых перфорированных пластин, заполненных губчатым свинцом и являющихся катодом, а положительным электродом служит оксид свинца РЬ02, впрессованный в свинцовую решетку. В качестве электролита используется 30%-ный раствор серной кислоты. Схема аккумулятора:

При погружении пластины в серную кислоту на их поверхности образуется труднорастворимая соль-сульфат свинца PbS()4. В этом состоянии электроды имеют одинаковый химический состав и окислительно-восстановительное взаимодействие невозможно, аккумулятор разряжен. Поэтому предварительно проводят зарядку аккумулятора, пропуская через него постоянный электрический ток от внешнего источника. Процессы, протекающие при зарядке подобны процессам при электролизе.

На катоде (-) происходит процесс восстановления.

Таблица 13.1

Некоторые гальванические элементы, применяемые в промышленности и на транспорте

Этой реакции разряда соответствует электрохимическая реакция

На аноде (+) ионы Рb2+ окисляются.

Образующаяся соль подвергается гидролизу

с последующим разложением лл ^ т.с. конечным результатом является образование оксида свинца

Таким образом, после зарядки один электрод аккумулятора представляет собой губчатый металлический свинец, а другой — оксид свинца (IV).

Общее химическое уравнение процесса зарядки:

При работе аккумулятора (разрядке) процессы на электродах протекают в обратном направлении.

Окисление на аноде:

Восстановление на катоде:

Суммарная реакция:

В процессе зарядки концентрация кислоты увеличивается, а в процессе разрядки наоборот, уменьшается. Относительная плотность серной кислоты указывает насколько разряжен аккумулятор. ЭДС свинцового аккумулятора достигает 2,1 В.

Напряжение при заряде выше ЭДС и растет в течение заряда. В конце напряжение достигает значения, достаточного для электролиза воды, тогда начинается выделение водорода и кислорода, поэтому выделение пузырьков газа (кипение) служит признаком окончания заряда аккумулятора.

При разрядке аккумулятора его ЭДС и напряжение падают. Если напряжение упадет ниже 1,7 В, на электродах начинается образование пленки PbS04 особой кристаллической структуры (так называемое сульфатирова- ние), которая изолирует электроды от электролита. Вследствие этого недопустимо снижение напряжения до 1,7 В.

Свинцовый аккумулятор обладает высоким КПД (=80%), высокой ЭДС, простотой и невысокой ценой. Недостатки — небольшая удельная энергия = 20—30 Вт ч/кг и малый срок службы (от 2 до 5 лет).

Топливный элемент

Разновидностью гальванического элемента является топливный элемент, в котором химическая энергия окислительно-восстановительной реакции сгорания газообразного и жидкого топлива превращается непосредственно в электрическую. Особенность топливных элементов состоит в том, что топливо и окислитель подводятся по мере их расходования. Это обеспечивает непрерывность работы источника тока теоретически в течение сколь угодно длительного времени. Одновременно и также непрерывно выводятся продукты окисления.

В качестве окислителя в топливных элементах почти всегда используется или чистый кислород или кислород воздуха. В качестве топлива применяются водород, гидразин, метанол, водяной и генераторный газы. Наибольшие успехи достигнуты в разработке водородно-кислородного топливного элемента.

Рассмотрим работу такого топливного элемента, который представляет собой два электрода специальной конструкции, погруженные в раствор щелочи (КОН). К поверхности одного из них непрерывно подводится водород (топливо), а к другому окислитель (кислород).

При замыкании внешней цени на аноде протекает реакция окисления водорода:

На катоде восстанавливается кислород:

По внешней цепи электроны перемещаются от анода к катоду, а в растворе цепь замыкается движением ионов ОН- от катода к аноду. Суммарное уравнение реакции сводится к получению воды.

Для эффективной работы топливного элемента используются катализаторы, которые наносят на электроды.

Важнейшей проблемой топливного элемента является кинетика электродных процессов — даже при очень слабом токе напряжение на клеммах источника быстро падает, так как элемент сильно поляризуется. Только большая скорость реакции окисления и восстановления позволяет получить довольно высокий коэффициент использования топлива. Для снижения поляризации топливного элемента используются пористые электроды с сильно развитой поверхностью, изготовленные из порошков металлов или угля, обладающие каталитическим действием. В качестве катализаторов электродов используются металлы платиновой группы, серебро, специально обработанные никель и кобальт (поэтому топливные элементы еще являются дорогостоящими). Скорость электродных процессов можно также увеличить путем увеличения температуры и давления.

Топливные элементы вырабатывают постоянный ток низкого напряжения (1 -1, 1 В), обеспечивают довольно высокий КПД 70% (по сравнению с тепловыми машинами), работают бесшумно и не выделяют вредных продуктов. Топливные элементы использовались в космических кораблях "Джемини" и "Апнолон".

 
<<   СОДЕРЖАНИЕ   >>