Полная версия

Главная

  • Увеличить шрифт
  • Уменьшить шрифт


<<   СОДЕРЖАНИЕ   >>

Регрессионный анализ

В результате изучения материала главы 4 обучающийся должен:

знать

  • • основные понятия регрессионного анализа;
  • • методы оценивания и свойства оценок метода наименьших квадратов;
  • • основные правила проверки значимости и интервального оценивания уравнения и коэффициентов регрессии;

уметь

  • • находить по выборочным данным оценки параметров двумерной и множественной моделей уравнений регрессии, анализировать их свойства;
  • • проверять значимость уравнения и коэффициентов регрессии;
  • • находить интервальные оценки значимых параметров;

владеть

  • • навыками статистического оценивания параметров двумерного и множественного уравнения регрессии; навыками проверки адекватности регрессионных моделей;
  • • навыками получения уравнения регрессии со всеми значимыми коэффициентами с использованием аналитического программного обеспечения.

Основные понятия

После проведения корреляционного анализа, когда выявлено наличие статистически значимых связей между переменными и оценена степень их тесноты, обычно переходят к математическому описанию вида зависимостей с использованием методов регрессионного анализа. С этой целью подбирают класс функций, связывающий результативный показатель у и аргументы„ вычисляют оценки параметров уравнения связи и анализируют точность полученного уравнения [3, 13].

Функция|, описывающая зависимость условного среднего значения результативного признака у от заданных значений аргументов, называется уравнением регрессии.

Термин "регрессия" (от лат. regression – отступление, возврат к чему- либо) введен английским психологом и антропологом Ф. Гальтоном и связан с одним из его первых примеров, в котором Гальтон, обрабатывая статистические данные, связанные с вопросом о наследственности роста, нашел, что если рост отцов отклоняется от среднего роста всех отцов на х дюймов, то рост их сыновей отклоняется от среднего роста всех сыновей меньше, чем на x дюймов. Выявленная тенденция была названа регрессией к среднему состоянию.

Термин "регрессия" широко используется в статистической литературе, хотя во многих случаях он недостаточно точно характеризует статистическую зависимость.

Для точного описания уравнения регрессии необходимо знать условный закон распределения результативного показателя у. В статистической практике такую информацию получить обычно не удается, поэтому ограничиваются поиском подходящих аппроксимаций для функции f(xu х2,.... л*), основанных на предварительном содержательном анализе явления или на исходных статистических данных.

В рамках отдельных модельных допущений о типе распределения вектора показателей <) может быть получен общий вид уравнения регрессии, где. Например, в предположении о том, что исследуемая совокупность показателей подчиняется ()-мерному нормальному закону распределения с вектором математических ожиданий

, где, и ковариационной матрицей,

где– дисперсия у,

  • ковариация между величинамии .
  • дисперсия

Уравнение регрессии (условное математическое ожидание) имеет вид

Таким образом, если многомерная случайная величина ()

подчиняется ()-мерному нормальному закону распределения, то уравнение регрессии результативного показателя у по объясняющим переменнымимеет линейный по х вид.

Однако в статистической практике обычно приходится ограничиваться поиском подходящих аппроксимаций для неизвестной истинной функции регрессии f(x), так как исследователь не располагает точным знанием условного закона распределения вероятностей анализируемого результативного показателя у при заданных значениях аргументов х.

Рассмотрим взаимоотношение между истинной , модельнойи оценкой регрессии [1, 29]. Пусть результативный показатель у связан с аргументом х соотношением

где– случайная величина, имеющая нормальный закон распределения, причеми. Истинная функция регрессии в этом случае имеет вид

Предположим, что точный вид истинного уравнения регрессии нам неизвестен, но мы располагаем девятью наблюдениями над двумерной случайной величиной, связанной соотношениеми представленной на рис. 4.1.

Взаимное расположение истинной f(x) и теоретической уы модели регрессии

Рис. 4.1. Взаимное расположение истинной f(x) и теоретической уы модели регрессии

Расположение точек на рис. 4.1 позволяет ограничиться классом линейных зависимостей вида

С помощью метода наименьших квадратов найдем оценку уравнения регрессии.

Для сравнения на рис. 4.1 приводятся графики истинной функции регрессиии теоретической аппроксимирующей функции регрессии. К последней сходится по вероятности оценка уравнения регрессии уы при неограниченном увеличении объема выборки ().

Поскольку мы вместо истинной функции регрессии ошибочно выбрали линейную функцию регрессии, что, к сожалению, достаточно часто встречается в практике статистических исследований, то наши статистические выводы и оценки не будут обладать свойством состоятельности, т.е. так бы мы ни увеличивали объем наблюдений, наша выборочная оценкане будет сходиться к истинной функции регрессии

Если бы мы правильно выбрали класс функций регрессии, то неточность в описании с помощью уы объяснялась бы только ограниченностью выборки и, следовательно, она могла бы быть сделана сколько угодно малой при

С целью наилучшего восстановления по исходным статистическим данным условного значения результативного показателяи неизвестной функции регрессии наиболее часто используют следующие критерии адекватности функции потерь [29].

1. Метод наименьших квадратов, согласно которому минимизируется квадрат отклонения наблюдаемых значений результативного показателя, , от модельных значений , где коэффициенты уравнения регрессии;– значения вектора аргументов в "-М наблюдении:

Решается задача отыскания оценкивектора. Получаемая регрессия называется средней квадратической.

2. Метод наименьших модулей, согласно которому минимизируется сумма абсолютных отклонений наблюдаемых значений результативного показателя от модульных значений, т.е.

Получаемая регрессия называется среднеабсолютной (медианной).

3. Метод минимакса сводится к минимизации максимума модуля отклонения наблюдаемого значения результативного показателя у, от модельного значения, т.е.

Получаемая при этом регрессия называется минимаксной.

В практических приложениях часто встречаются задачи, в которых изучается случайная величина у, зависящая от некоторого множества переменныхи неизвестных параметров. Будем рассматривать () как (k + 1)-мерную генеральную совокупность, из которой взята случайная выборка объемом п, где () результат /-го наблюдения,. Требуется по результатам наблюдений оценить неизвестные параметры. Описанная выше задача относится к задачам регрессионного анализа.

Регрессионным анализом называют метод статистического анализа зависимости случайной величины у от переменных, рассматриваемых в регрессионном анализе как неслучайные величины, независимо от истинного закона распределения

Часто предполагается, что случайная величина у имеет нормальный закон распределения с условным математическим ожиданием, являющимся функцией от аргументов, и постоянной, не зависящей от аргументов дисперсий

Следует помнить, что требование нормальности закона распределения у необходимо лишь для проверки значимости уравнения регрессии и его параметров, а также для интервального оценивания. Для получения точечных оценок, этого условия не требуется.

В регрессионном анализе под линейной моделью подразумевают модель, линейно зависящую от неизвестных параметров

Простейшей линейной будем называть модель, линейно зависящую как от параметров, так и от переменных.

В общем виде линейная модель регрессии имеет вид

где – некоторая функция его переменных – случайная величина с нулевым математическим ожиданием и дисперсией

В регрессионном методе вид уравнения регрессии выбирают исходя из анализа физической сущности изучаемого явления и результатов наблюдения.

Наиболее часто встречаются следующие виды уравнений регрессии:

  • • линейное множественное ;
  • • полиномиальное ;
  • • гиперболическое ;
  • • степенное

Путем логарифмирования степенные уравнения регрессии могут быть преобразованы в линейные уравнения относительно параметров. Логарифмируя, получим

Пустьдля, тогда после подстановки будем иметь линейное уравнение регрессии: В результате замен переменныхигиперболическое и полиномиальное уравнения также могут быть преобразованы в линейные, теория которых разработана наиболее полно.

Оценки неизвестных параметров уравнения регрессии находят обычно методом наименьших квадратов. Ниже мы остановимся более подробно на этом методе и свойствах оценок, найденных этим методом.

 
<<   СОДЕРЖАНИЕ   >>