Полная версия

Главная arrow Информатика arrow Вычислительные системы, сети и телекоммуникации. Моделирование сетей

  • Увеличить шрифт
  • Уменьшить шрифт


<<   СОДЕРЖАНИЕ   >>

Основные законы распределения случайных величин

Нормальное распределение

Непрерывная случайная величина X имеет нормальный закон распределения с параметрами а и а, если ее плотность вероятности /(*) имеет вид

(2.20)

Кривая нормального распределения /(*) (нормальная кривая, или кривая Гаусса) приведена на рис. 2.1.

Нормальный закон распределения случайной величины с параметрами а = 0 и а = 1 называется стандартным или нормированным, а соответствующая нормальная кривая – стандартной или нормированной.

Математическое ожидание случайной величины X, распределенной по нормальному закону, равно параметру а этого закона, а ее дисперсия – квадрату параметра σ, т. е.

Кривая нормального распределения

Рис. 2.1. Кривая нормального распределения

Наиболее важные свойства случайной величины, распределенной

по нормальному закону:

1. Вероятность попадания случайной величины в интервал

(2.21)

где

2. Вероятность того, что отклонение случайной величины X, распределенной по нормальному закону, от математического ожидания а не превысит по абсолютной величине величину', равна:

(2.22)

где

3. "Правило трех сигм". Если случайная величина X распределена нормально (с параметрами а и ст), то практически достоверно, что абсолютная величина ее отклонения от математического ожидания не превосходит утроенного среднего квадратического отклонения, т. е.

(2.23)

  • 4. Если случайная величина X имеет нормальный закон распределения с параметрами а и, то практически достоверно, что ее значения заключены в интервале
  • 5. Коэффициент асимметрии и эксцесс нормально распределенной случайной величины равны нулю [18].

Нормальный закон распределения наиболее часто встречается на практике. Главная особенность, выделяющая его среди других законов, состоит в том, что он является предельным законом, к которому приближаются другие законы при весьма часто встречающихся типичных условиях.

 
<<   СОДЕРЖАНИЕ   >>